Advertisements
Advertisements
Question
Solution
\[\int\left( \frac{x^5 + x^{- 2} + 2}{x^2} \right)dx\]
\[ = \int \left( \frac{x^5}{x^2} + \frac{x^{- 2}}{x^2} + \frac{2}{x^2} \right)dx\]
\[ = \int\left( x^3 + x^{- 4} + 2 x^{- 2} \right)dx\]
\[ = \frac{x^{3 + 1}}{3 + 1} + \frac{x^{- 4 + 1}}{- 4 + 1} + 2\frac{x^{- 2 + 1}}{- 2 + 1} + C\]
\[ = \frac{x^4}{4} - \frac{1}{3 x^3} - \frac{2}{x} + C\]
APPEARS IN
RELATED QUESTIONS
\[\int \tan^2 \left( 2x - 3 \right) dx\]
` = ∫ root (3){ cos^2 x} sin x dx `
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
Evaluate the following integrals:
\[\int\left( e^\text{log x} + \sin x \right) \text{ cos x dx }\]
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}} \text{ dx }\]