Advertisements
Advertisements
Question
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
Options
\[- \frac{1}{\log_e 2}\]
− loge 2
`-1`
\[\frac{1}{2}\]
Solution
[- \frac{1}{\log_e 2}\]
\[\text{If }\int\frac{2^\frac{1}{x}}{x^2}dx = k \cdot 2^\frac{1}{x} + C .............(1) \]
\[\text{Let }\frac{1}{x} = t\]
\[ \Rightarrow \frac{- 1}{x^2}dx = dt\]
\[ \Rightarrow \frac{dx}{x^2} = - dt\]
\[\text{Putting }\frac{1}{x} = t\text{ and }\frac{dx}{x^2} = - dt\text{ in LHS of eq. (1), we get}\]
\[ - \int 2^t \cdot dt\]
\[ \Rightarrow - \frac{2^t}{\ln 2} + C\]
\[ \Rightarrow - \frac{2^\frac{1}{x}}{\ln 2} + C . . . (2) \]
\[\text{Comparing RHS of eq (1) with eq (2) we get} , \]
\[ \therefore k = - \frac{1}{\ln 2} or - \frac{1}{\log_e 2}\]
APPEARS IN
RELATED QUESTIONS
` ∫ {cosec x} / {"cosec x "- cot x} ` dx
If f' (x) = x + b, f(1) = 5, f(2) = 13, find f(x)
` = ∫ root (3){ cos^2 x} sin x dx `
Evaluate the following integrals:
Evaluate the following integral:
If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int \sec^4 x\ dx\]
\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]
Find: `int (3x +5)/(x^2+3x-18)dx.`