English

If ∫ 2 1 / X X 2 D X = K 2 1 / X + C , Then K is Equal to - Mathematics

Advertisements
Advertisements

Question

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to

Options

  • \[- \frac{1}{\log_e 2}\]

  • − loge 2

  • `-1`

  • \[\frac{1}{2}\]

MCQ

Solution

[- \frac{1}{\log_e 2}\]

 

\[\text{If }\int\frac{2^\frac{1}{x}}{x^2}dx = k \cdot 2^\frac{1}{x} + C .............(1) \]
\[\text{Let }\frac{1}{x} = t\]
\[ \Rightarrow \frac{- 1}{x^2}dx = dt\]
\[ \Rightarrow \frac{dx}{x^2} = - dt\]
\[\text{Putting }\frac{1}{x} = t\text{ and }\frac{dx}{x^2} = - dt\text{ in LHS of eq. (1), we get}\]
\[ - \int 2^t \cdot dt\]
\[ \Rightarrow - \frac{2^t}{\ln 2} + C\]
\[ \Rightarrow - \frac{2^\frac{1}{x}}{\ln 2} + C . . . (2) \]
\[\text{Comparing RHS of eq (1) with eq (2) we get} , \]
\[ \therefore k = - \frac{1}{\ln 2} or - \frac{1}{\log_e 2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - MCQ [Page 200]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
MCQ | Q 10 | Page 200

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int\frac{1}{1 + \cos 2x} dx\]

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

` ∫  tan^5 x   sec ^4 x   dx `

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int \sec^4 x\ dx\]


\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×