English

∫ X 2 + X − 1 X 2 + X − 6 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]
Sum

Solution

\[\int\left( \frac{x^2 + x - 1}{x^2 + x - 6} \right)dx\]
\[ = \int\left( \frac{x^2 + x - 6 + 6 - 1}{x^2 + x - 6} \right)dx\]
\[ = \int\left( \frac{x^2 + x - 6}{x^2 + x - 6} \right)dx + 5\int\frac{1}{x^2 + x - 6}dx\]
\[ = \int dx + 5\int\frac{1}{x^2 + 3x - 2x - 6}dx\]
\[ = \int dx + 5\int\frac{1}{x\left( x + 3 \right) - 2\left( x + 3 \right)}dx\]
\[ = \int dx + 5\int\frac{1}{\left( x - 2 \right)\left( x + 3 \right)}dx ............(1)\]
\[\text{Let }\frac{1}{\left( x - 2 \right)\left( x + 3 \right)} = \frac{A}{x - 2} + \frac{B}{x + 3}\]
\[ \Rightarrow \frac{1}{\left( x - 2 \right)\left( x + 3 \right)} = \frac{A\left( x + 3 \right) + B\left( x - 2 \right)}{\left( x - 2 \right)\left( x + 3 \right)}\]
\[ \Rightarrow 1 = A\left( x + 3 \right) + B\left( x - 2 \right) . ............(2) \]
\[\text{Putting }x + 3 = 0\text{ or }x = - 3\text{ in eq. (2)}\]

\[\Rightarrow 1 = A \times 0 + B\left( - 3 - 2 \right)\]

\[\Rightarrow B = - \frac{1}{5}\]

\[\text{Putting }x - 2 = 0\text{ or }x = 2\text{ in eq. (2)}\]

\[\Rightarrow 1 = A\left( 2 + 3 \right) + B \times 0\]

\[\Rightarrow A = \frac{1}{5}\]

\[\therefore \frac{1}{\left( x - 2 \right)\left( x + 3 \right)} = \frac{1}{5}\left( x - 2 \right) - \frac{1}{5}\left( x + 3 \right)\]

\[ \Rightarrow \int\frac{1}{\left( x - 2 \right)\left( x + 3 \right)}dx = \frac{1}{5}\int\frac{dx}{x - 2} - \frac{1}{5}\int\frac{dx}{x + 3}\]

\[ = \frac{1}{5} \ln \left| x - 2 \right| - \frac{1}{5} \ln \left| x + 3 \right| + C\]

\[ = \frac{1}{5} \ln \left| \frac{x - 2}{x + 3} \right| + C ...........(3)\]

From eq. (1) and eq. (3)

\[ \therefore \int\left( \frac{x^2 + x - 1}{x^2 + x - 6} \right)dx = x + \frac{5}{5} \ln \left| \frac{x - 2}{x + 3} \right| + C\]

\[ = x + \ln \left| x - 2 \right| - \ln \left| x + 3 \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 176]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 3 | Page 176

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{1}{1 - \sin x} dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int x^3 \cos x^4 dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

` ∫   tan   x   sec^4  x   dx  `


\[\int \cos^5 x \text{ dx }\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×