English

∫ ( 2 X + 5 ) √ 10 − 4 X − 3 X 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]
Sum

Solution

\[I = \int\left( 2x + 5 \right)\sqrt{10 - 4x - 3 x^2}dx\]
\[\text{ Let } \left( 2x + 5 \right) = A\frac{d}{dx}\left( 10 - 4x - 3 x^2 \right) + B\]
\[ \Rightarrow \left( 2x + 5 \right) = A\left( - 4 - 6x \right) + B\]
\[ \Rightarrow \left( 2x + 5 \right) = - 6Ax + \left( B - 4A \right)\]
\[ \Rightarrow 2 = - 6A\text{  and } \left( B - 4A \right) = 5\]
\[ \Rightarrow A = - \frac{1}{3} \text{ and B }= \frac{11}{3}\]

\[\Rightarrow \left( 2x + 5 \right) = - \frac{1}{3}\left( - 4 - 6x \right) + \frac{11}{3}\]
\[ \Rightarrow I = - \frac{1}{3}\int\left( - 4 - 6x \right)\sqrt{10 - 4x - 3 x^2}dx + \frac{11}{3}\int\sqrt{10 - 4x - 3 x^2}dx\]
\[\text{ Let I }= - \frac{1}{3} I_1 + \frac{11}{3} I_2 . . . \left( i \right)\]
\[\text{ Now,} \]
\[ I_1 = \int\left( - 4 - 6x \right)\sqrt{10 - 4x - 3 x^2}dx\]
\[\text{ Let }\left( 10 - 4x - 3 x^2 \right) = t, or, \left( - 4 - 6x \right)dx = dt\]
\[ \Rightarrow I_1 = \int\sqrt{t}dt\]
\[ = \frac{2}{3} t^\frac{3}{2} + c_1 \]
\[ \Rightarrow I_1 = \frac{2}{3} \left( 10 - 4x - 3 x^2 \right)^\frac{3}{2} + c_1\]

\[I_2 = \int\sqrt{\left( 10 - 4x - 3 x^2 \right)}dx\]
\[ = \int\sqrt{3\left( \frac{10}{3} - \frac{4}{3}x - x^2 \right)}dx\]
\[ = \sqrt{3}\int\sqrt{\left( \frac{26}{9} - \frac{4}{9} - \frac{4}{3}x - x^2 \right)}dx\]
\[ = \sqrt{3}\int\sqrt{\left[ \left( \frac{\sqrt{26}}{3} \right)^2 - \left( \frac{4}{9} + \frac{4}{3}x + x^2 \right) \right]}dx\]
\[ = \sqrt{3}\int\sqrt{\left[ \left( \frac{\sqrt{26}}{3} \right)^2 - \left( x + \frac{2}{3} \right)^2 \right]}dx\]
\[ = \sqrt{3}\sin\left( \frac{x + \frac{2}{3}}{\frac{\sqrt{26}}{3}} \right) + c_2 \]
\[ = \sqrt{3}\sin\left( \frac{3x + 2}{\sqrt{26}} \right) + c_2\]

Using (i), we get

\[I = - \frac{1}{3} \times \frac{2}{3} \left( 10 - 4x - 3 x^2 \right)^\frac{3}{2} + \frac{11}{3} \times \sqrt{3}\sin\left( \frac{3x + 2}{\sqrt{26}} \right) + C\]
\[ \therefore I = - \frac{2}{9} \left( 10 - 4x - 3 x^2 \right)^\frac{3}{2} + \frac{11\sqrt{3}}{3}\sin\left( \frac{3x + 2}{\sqrt{26}} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.29 [Page 159]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.29 | Q 14 | Page 159

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×