English

∫ X 2 + 9 X 4 + 81 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 

Sum

Solution

\[\text{ We  have,} \]
\[I = \int \left( \frac{x^2 + 9}{x^4 + 81} \right)dx\]
\[\text{Dividing numerator and denominator by} \text{ x}^2 \]
\[I = \int\frac{\left( 1 + \frac{9}{x^2} \right)dx}{x^2 + \frac{81}{x^2}}\]
\[ = \int\frac{\left( 1 + \frac{9}{x^2} \right)dx}{x^2 + \left( \frac{9}{x} \right)^2 - 2 \times x \times \frac{9}{x} + 2 \times x \times \frac{9}{x}}\]
\[ = \int\frac{\left( 1 + \frac{9}{x^2} \right)dx}{\left( x - \frac{9}{x} \right)^2 + \left( \sqrt{18} \right)^2}\]
\[\text{ Putting x }- \frac{9}{x} = t\]
\[ \Rightarrow \left( 1 + \frac{9}{x^2} \right)dx = dt\]
\[ \therefore I = \int\frac{dt}{t^2 + \left( \sqrt{18} \right)^2}\]
\[ = \int\frac{dt}{t^2 + \left( 3\sqrt{2} \right)^2}\]
\[ = \frac{1}{3\sqrt{2}} \tan^{- 1} \left( \frac{t}{3\sqrt{2}} \right) + C\]
\[ = \frac{1}{3\sqrt{2}} \tan^{- 1} \left( \frac{x - \frac{9}{x}}{3\sqrt{2}} \right) + C\]
\[ = \frac{1}{3\sqrt{2}} \tan^{- 1} \left( \frac{x^2 - 9}{3\sqrt{2}x} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.31 [Page 190]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.31 | Q 3 | Page 190

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int \cos^2 \text{nx dx}\]

Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

` ∫   tan   x   sec^4  x   dx  `


\[\int \cos^5 x \text{ dx }\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int x^3 \text{ log x dx }\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int x \cos^3 x\ dx\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int \sin^4 2x\ dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×