English

∫ 1 ( X 2 + 1 ) ( X 2 + 2 ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]
Sum

Solution

We have,
\[I = \int \frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}\]
\[\text{Putting }x^2 = t\]
Then,
\[\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} = \frac{1}{\left( t + 1 \right) \left( t + 2 \right)}\]
\[\text{Let }\frac{1}{\left( t + 1 \right) \left( t + 2 \right)} = \frac{A}{t + 1} + \frac{B}{t + 2}\]
\[ \Rightarrow \frac{1}{\left( t + 1 \right) \left( t + 2 \right)} = \frac{A\left( t + 2 \right) + B\left( t + 1 \right)}{\left( t + 1 \right) \left( t + 2 \right)}\]
\[ \Rightarrow 1 = A\left( t + 2 \right) + B\left( t + 1 \right)\]
\[\text{Putting }t + 2 = 0\]
\[ \Rightarrow t = - 2\]
\[ \therefore 1 = A \times 0 + B\left( - 1 \right)\]
\[ \Rightarrow B = - 1\]
\[\text{Putting }t + 1 = 0\]
\[ \Rightarrow t = - 1\]
\[ \therefore 1 = A\left( - 1 + 2 \right) + B \times 0\]
\[ \Rightarrow A = 1\]
\[ \therefore \frac{1}{\left( t + 1 \right) \left( t + 2 \right)} = \frac{1}{t + 1} - \frac{1}{t + 2}\]
\[ \Rightarrow \frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} = \frac{1}{x^2 + 1} - \frac{1}{x^2 + \left( \sqrt{2} \right)^2}\]
\[ \therefore I = \int \frac{dx}{x^2 + 1^2} - \int\frac{dx}{x^2 + \left( \sqrt{2} \right)^2}\]
\[ = \tan^{- 1} \left( x \right) - \frac{1}{\sqrt{2}} \tan^{- 1} \left( \frac{x}{\sqrt{2}} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 177]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 53 | Page 177

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int \tan^3 x\ dx\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×