Advertisements
Advertisements
Question
Solution
We have,
\[I = \int \frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}\]
\[\text{Putting }x^2 = t\]
Then,
\[\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} = \frac{1}{\left( t + 1 \right) \left( t + 2 \right)}\]
\[\text{Let }\frac{1}{\left( t + 1 \right) \left( t + 2 \right)} = \frac{A}{t + 1} + \frac{B}{t + 2}\]
\[ \Rightarrow \frac{1}{\left( t + 1 \right) \left( t + 2 \right)} = \frac{A\left( t + 2 \right) + B\left( t + 1 \right)}{\left( t + 1 \right) \left( t + 2 \right)}\]
\[ \Rightarrow 1 = A\left( t + 2 \right) + B\left( t + 1 \right)\]
\[\text{Putting }t + 2 = 0\]
\[ \Rightarrow t = - 2\]
\[ \therefore 1 = A \times 0 + B\left( - 1 \right)\]
\[ \Rightarrow B = - 1\]
\[\text{Putting }t + 1 = 0\]
\[ \Rightarrow t = - 1\]
\[ \therefore 1 = A\left( - 1 + 2 \right) + B \times 0\]
\[ \Rightarrow A = 1\]
\[ \therefore \frac{1}{\left( t + 1 \right) \left( t + 2 \right)} = \frac{1}{t + 1} - \frac{1}{t + 2}\]
\[ \Rightarrow \frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} = \frac{1}{x^2 + 1} - \frac{1}{x^2 + \left( \sqrt{2} \right)^2}\]
\[ \therefore I = \int \frac{dx}{x^2 + 1^2} - \int\frac{dx}{x^2 + \left( \sqrt{2} \right)^2}\]
\[ = \tan^{- 1} \left( x \right) - \frac{1}{\sqrt{2}} \tan^{- 1} \left( \frac{x}{\sqrt{2}} \right) + C\]
APPEARS IN
RELATED QUESTIONS
` ∫ {cosec x} / {"cosec x "- cot x} ` dx
\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]
Write a value of
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]
Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .
Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .