मराठी

∫ 1 ( X 2 + 1 ) ( X 2 + 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]
बेरीज

उत्तर

We have,
\[I = \int \frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}\]
\[\text{Putting }x^2 = t\]
Then,
\[\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} = \frac{1}{\left( t + 1 \right) \left( t + 2 \right)}\]
\[\text{Let }\frac{1}{\left( t + 1 \right) \left( t + 2 \right)} = \frac{A}{t + 1} + \frac{B}{t + 2}\]
\[ \Rightarrow \frac{1}{\left( t + 1 \right) \left( t + 2 \right)} = \frac{A\left( t + 2 \right) + B\left( t + 1 \right)}{\left( t + 1 \right) \left( t + 2 \right)}\]
\[ \Rightarrow 1 = A\left( t + 2 \right) + B\left( t + 1 \right)\]
\[\text{Putting }t + 2 = 0\]
\[ \Rightarrow t = - 2\]
\[ \therefore 1 = A \times 0 + B\left( - 1 \right)\]
\[ \Rightarrow B = - 1\]
\[\text{Putting }t + 1 = 0\]
\[ \Rightarrow t = - 1\]
\[ \therefore 1 = A\left( - 1 + 2 \right) + B \times 0\]
\[ \Rightarrow A = 1\]
\[ \therefore \frac{1}{\left( t + 1 \right) \left( t + 2 \right)} = \frac{1}{t + 1} - \frac{1}{t + 2}\]
\[ \Rightarrow \frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} = \frac{1}{x^2 + 1} - \frac{1}{x^2 + \left( \sqrt{2} \right)^2}\]
\[ \therefore I = \int \frac{dx}{x^2 + 1^2} - \int\frac{dx}{x^2 + \left( \sqrt{2} \right)^2}\]
\[ = \tan^{- 1} \left( x \right) - \frac{1}{\sqrt{2}} \tan^{- 1} \left( \frac{x}{\sqrt{2}} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 53 | पृष्ठ १७७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

` ∫  tan^5 x   sec ^4 x   dx `

` = ∫1/{sin^3 x cos^ 2x} dx`


Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×