Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[I = \int \frac{\left( 2x + 1 \right)dx}{\left( x - 2 \right) \left( x - 3 \right)}\]
\[\text{Let }\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} = \frac{A}{x - 2} + \frac{B}{x - 3}\]
\[ \Rightarrow \frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} = \frac{A\left( x - 3 \right) + B\left( x - 2 \right)}{\left( x - 2 \right) \left( x - 3 \right)}\]
\[ \Rightarrow 2x + 1 = A\left( x - 3 \right) + B\left( x - 2 \right)\]
\[\text{Putting }x - 3 = 0\]
\[ \Rightarrow x = 3\]
\[ \therefore 7 = A \times 0 + B \times \left( 3 - 2 \right)\]
\[ \Rightarrow B = 7\]
\[\text{Putting }x - 2 = 0\]
\[ \Rightarrow x = 2\]
\[ \therefore 5 = A\left( - 1 \right)\]
\[ \Rightarrow A = - 5\]
\[ \therefore I = - 5\int\frac{dx}{x - 2} + 7\int\frac{dx}{x - 3}\]
\[ = - 5 \log \left| x - 2 \right| + 7 \log \left| x - 3 \right| + C\]
\[ = \log \left| x - 3 \right|^7 - \log \left| x - 2 \right|^5 + C\]
\[ = \log \left| \frac{\left( x - 3 \right)^7}{\left( x - 2 \right)^5} \right| + C\]
APPEARS IN
संबंधित प्रश्न
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]
Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .
\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]