Advertisements
Advertisements
प्रश्न
\[\int\frac{x}{x^4 - x^2 + 1} dx\]
बेरीज
उत्तर
` ∫ {x dx}/{x^4 - x^2 + 1}`
\[\text{ Let } x^2 = t\]
\[ \Rightarrow \text{ 2x dx } = dt\]
\[ \Rightarrow \text{ x dx } = \frac{dt}{2}\]
Now, ` ∫ {x dx}/{x^4 - x^2 + 1}`
\[ = \frac{1}{2}\int\frac{dt}{t^2 - t + 1}\]
\[ = \frac{1}{2}\int\frac{dt}{t^2 - t + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 + 1}\]
\[ = \frac{1}{2}\int\frac{dt}{\left( t - \frac{1}{2} \right)^2 + \frac{3}{4}}\]
\[ = \frac{1}{2}\int\frac{dt}{\left( t - \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}\]
\[ = \frac{1}{2} \times \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{t - \frac{1}{2}}{\frac{\sqrt{3}}{2}} \right) + C\]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{2t - 1}{\sqrt{3}} \right) + C\]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{2 x^2 - 1}{\sqrt{3}} \right) + C\]
\[\text{ Let } x^2 = t\]
\[ \Rightarrow \text{ 2x dx } = dt\]
\[ \Rightarrow \text{ x dx } = \frac{dt}{2}\]
Now, ` ∫ {x dx}/{x^4 - x^2 + 1}`
\[ = \frac{1}{2}\int\frac{dt}{t^2 - t + 1}\]
\[ = \frac{1}{2}\int\frac{dt}{t^2 - t + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 + 1}\]
\[ = \frac{1}{2}\int\frac{dt}{\left( t - \frac{1}{2} \right)^2 + \frac{3}{4}}\]
\[ = \frac{1}{2}\int\frac{dt}{\left( t - \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}\]
\[ = \frac{1}{2} \times \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{t - \frac{1}{2}}{\frac{\sqrt{3}}{2}} \right) + C\]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{2t - 1}{\sqrt{3}} \right) + C\]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{2 x^2 - 1}{\sqrt{3}} \right) + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]
\[\int\frac{1}{1 - \cos 2x} dx\]
\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]
\[\int\frac{x^2 + x + 5}{3x + 2} dx\]
\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]
\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]
\[\int\left( x + 2 \right) \sqrt{3x + 5} \text{dx} \]
\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]
\[\int\frac{e^x + 1}{e^x + x} dx\]
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]
\[\int\frac{1}{1 + \sqrt{x}} dx\]
\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]
\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]
\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]
\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]
\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]
` ∫ { x^2 dx}/{x^6 - a^6} dx `
\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]
\[\int x^2 \sin^2 x\ dx\]
\[\int \left( \log x \right)^2 \cdot x\ dx\]
\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]
\[\int x\sqrt{x^2 + x} \text{ dx }\]
\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]
\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]
\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]
\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to
\[\int\left( x - 1 \right) e^{- x} dx\] is equal to
\[\int\frac{1}{1 + \tan x} dx =\]
\[\int\frac{x^3}{x + 1}dx\] is equal to
\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int\sin x \sin 2x \text{ sin 3x dx }\]
\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]
\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]
\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]
\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]
\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]
\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]