Advertisements
Advertisements
प्रश्न
\[\int\frac{1}{1 - \cos 2x} dx\]
बेरीज
उत्तर
\[\int\frac{dx}{1 - \cos \left( 2x \right)} \left[ \therefore 1 - \cos A = 2 \sin^2 \left( \frac{A}{2} \right) \right]\]
\[ = \int\frac{dx}{2 \sin^2 x}\]
\[ = \frac{1}{2}\int {cosec}^2 x dx\]
\[ = \frac{1}{2}\left[ - \cot x \right] + C\]
\[ = - \frac{1}{2}\cot x + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]
\[\int\sin x\sqrt{1 + \cos 2x} dx\]
` ∫ cos mx cos nx dx `
\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]
\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]
\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]
\[\int \sin^5\text{ x }\text{cos x dx}\]
` ∫ tan^3 x sec^2 x dx `
Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]
\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]
\[\int\frac{3 x^5}{1 + x^{12}} dx\]
` ∫ { x^2 dx}/{x^6 - a^6} dx `
\[\int\frac{1}{\sqrt{2x - x^2}} dx\]
\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]
\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]
\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]
\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]
\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]
\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]
\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]
\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{ dx }\]
\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]
\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]
\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]
\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]
\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]
\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{ dx}\]
\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]
\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\]
\[\int \sin^4 2x\ dx\]
\[\int \cot^4 x\ dx\]
\[\int\sqrt{\text{ cosec x} - 1} \text{ dx }\]
\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]
\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]
\[\int \sec^6 x\ dx\]
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]