मराठी

∫ X + 1 √ 4 + 5 X − X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I } = \int\frac{\left( x + 1 \right) dx}{\sqrt{4 + 5x - x^2}}\]
\[\text{ Also,} x + 1 = A \frac{d}{dx} \left( 4 + 5x - x^2 \right) + B\]
\[x + 1 = A \left( 5 - 2x \right) + B\]
\[x + 1 = \left( - 2A \right) x + 5A + B\]
\[\text{Equating Coefficients of like terms}\]
\[ - 2A = 1\]
\[ \Rightarrow A = - \frac{1}{2}\]
\[\text{ And }\]
\[5A + B = 1\]
\[ \Rightarrow - \frac{5}{2} + B = 1\]
\[B = \frac{7}{2}\]
\[I = \int\frac{\left( x + 1 \right) dx}{\sqrt{4 + 5x - x^2}}\]
\[ = \int\left( \frac{- \frac{1}{2} \left( 5 - 2x \right) + \frac{7}{2}}{\sqrt{4 + 5x - x^2}} \right)dx\]
\[ = - \frac{1}{2}\int\frac{\left( 5 - 2x \right) dx}{\sqrt{4 + 5x - x^2}} + \frac{7}{2}\int\frac{dx}{\sqrt{4 - \left( x^2 - 5x \right)}}\]
\[ = - \frac{1}{2}\int\frac{\left( 5 - 2x \right) dx}{\sqrt{4 + 5x - x^2}} + \frac{7}{2}\int\frac{dx}{\sqrt{4 - \left[ x^2 - 5x + \left( \frac{5}{2} \right)^2 - \left( \frac{5}{2} \right)^2 \right]}}\]
\[ = - \frac{1}{2}\int\frac{\left( 5 - 2x \right) dx}{\sqrt{4 + 5x - x^2}} + \frac{7}{2}\int\frac{dx}{\sqrt{4 - \left( x - \frac{5}{2} \right)^2 + \frac{25}{4}}}\]
\[ = - \frac{1}{2}\int\left( \frac{5 - 2x}{\sqrt{4 + 5x - x^2}} \right)dx + \frac{7}{2}\int\frac{dx}{\sqrt{\frac{41}{4} - \left( x - \frac{5}{2} \right)^2}}\]
\[ = - \frac{1}{2}\int\left( \frac{5 - 2x}{\sqrt{4 + 5x - x^2}} \right)dx + \frac{7}{2}\int\frac{dx}{\sqrt{\left( \frac{\sqrt{41}}{2} \right)^2 - \left( x - \frac{5}{2} \right)^2}}\]
\[\text{ let } 4 + 5x - x^2 = t\]
\[ \Rightarrow \left( 5 - 2x \right) dx = dt\]
\[\text
{Then }, \]
\[I = - \frac{1}{2}\int\frac{dt}{\sqrt{t}} + \frac{7}{2}\int\frac{dx}{\sqrt{\left( \frac{\sqrt{41}}{2} \right)^2 - \left( x - \frac{5}{2} \right)^2}}\]
\[ = - \frac{1}{2} \times 2\sqrt{t} + \frac{7}{2} \times \sin^{- 1} \left( \frac{x - \frac{5}{2}}{\frac{\sqrt{41}}{2}} \right) + C\]
\[ = - \sqrt{t} + \frac{7}{2} \sin^{- 1} \left( \frac{2x - 5}{\sqrt{41}} \right) + C\]
\[ = - \sqrt{4 + 5x - x^2} + \frac{7}{2} \sin^{- 1} \left( \frac{2x - 5}{\sqrt{41}} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.21 [पृष्ठ ११०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.21 | Q 3 | पृष्ठ ११०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

\[\int \sec^4 2x \text{ dx }\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int x^2 \text{ cos x dx }\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int \tan^3 x\ dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×