मराठी

∫ Sin X − Cos X √ Sin 2 X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 
बेरीज

उत्तर

\[\text{ Let I } = \int\left( \frac{\sin x - \cos x}{\sqrt{\sin 2x}} \right) dx\]
\[\text{ Putting sin x +  cos x = t}\]
\[ \Rightarrow \left( \cos x - \sin x \right) dx = dt\]
\[ \Rightarrow \left( \sin x - \cos x \right) dx = - dt\]
\[\text{ Also  sin x +  cos x = t}\]
\[\text{ Squaring both sides,} \]
\[ \left( \sin x + \cos x \right)^2 = t^2 \]
\[ \Rightarrow \sin^2 x + \cos^2 x + 2 \sin x \cos x = t^2 \]
\[ \Rightarrow 1 + \text{ sin  2x }= t^2 \]
\[ \Rightarrow \text{  sin  2x} = t^2 - 1\]
\[ \therefore I = \int\frac{- dt}{\sqrt{t^2 - 1}}\]
\[ = - \text{ ln} \left| t + \sqrt{t^2 - 1} \right| + C ..........\left( \because \int\frac{dt}{\sqrt{x^2 - a^2}} = \text{ ln}\left| x + \sqrt{x^2 - a^2} \right| + C \right)\]
\[ = - \text{ ln} \left| \left( \sin x + \cos x \right) + \sqrt{\left( \sin x + \cos x \right)^2 - 1} \right| + C ..........\left( \because t = \sin x + \cos x \right)\]
\[ = - \text{ ln }\left| \left( \sin x + \cos x \right) + \sqrt{\sin^2 x + \cos^2 x + 2 \sin \cos x - 1} \right| + C\]
\[ = - \text{ ln }\left| \sin x + \cos x + \sqrt{\sin 2 x} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 23 | पृष्ठ २०३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int \cot^6 x \text{ dx }\]

\[\int \cos^5 x \text{ dx }\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int x \text{ sin 2x dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int\cos\sqrt{x}\ dx\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{x^3}{x + 1}dx\] is equal to

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int {cosec}^4 2x\ dx\]


\[\int\sqrt{x^2 - a^2} \text{ dx}\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×