Advertisements
Advertisements
प्रश्न
\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]
बेरीज
उत्तर
\[I = \int\frac{x + 7}{3 x^2 + 25x + 28}dx\]
\[ = \int\frac{x + 7}{3 x^2 + 21x + 4x + 28}dx\]
\[ = \int\frac{x + 7}{3x\left( x + 7 \right) + 4\left( x + 7 \right)}dx\]
\[ = \int\frac{x + 7}{\left( 3x + 4 \right)\left( x + 7 \right)}dx\]
\[= \int\frac{1}{(3x + 4)}dx\]
\[ = \frac{1}{3}\text{ ln }\left| 3x + 4 \right| + c\]
\[ = \frac{1}{3}\text{ ln }\left| 3x + 4 \right| + c\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\left\{ x^2 + e^{\log x}+ \left( \frac{e}{2} \right)^x \right\} dx\]
\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]
` ∫ {cosec x} / {"cosec x "- cot x} ` dx
\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]
\[\int\frac{x^3}{x - 2} dx\]
\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]
\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]
\[\int\frac{1 - \cot x}{1 + \cot x} dx\]
\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]
\[\int\frac{1}{1 + \sqrt{x}} dx\]
\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]
` ∫ sec^6 x tan x dx `
\[\int \sin^5 x \text{ dx }\]
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]
\[\int\frac{1}{2 x^2 - x - 1} dx\]
\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]
\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]
\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]
\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]
\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]
\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]
\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]
\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{ dx }\]
\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]
\[\int\frac{1}{x^4 - 1} dx\]
\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]
\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]
\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]
\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]
\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]
\[\int \sin^3 x \cos^4 x\ \text{ dx }\]
\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]
\[\int {cosec}^4 2x\ dx\]
\[\int x \sec^2 2x\ dx\]
\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]
\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]
\[\int\frac{\cos^7 x}{\sin x} dx\]
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`