मराठी

∫ 1 ( 2 X 2 + 3 ) √ X 2 − 4 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]
बेरीज

उत्तर

\[\text{ We have,} \]
\[I = \int\frac{dx}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}}\]
\[\text{ Putting  x }= \frac{1}{t}\]
\[ \Rightarrow dx = - \frac{1}{t^2}dt\]
\[ \therefore I = \int\frac{- \frac{1}{t^2}dt}{\left( \frac{2}{t^2} + 3 \right) \sqrt{\frac{1}{t^2} - 4}}\]
\[ = \int\frac{- \frac{1}{t^2} dt}{\frac{\left( 2 + 3 t^2 \right)}{t^2} \times \frac{\sqrt{1 - 4 t^2}}{t}}\]
\[ = - \int\frac{t\text{ dt}}{\left( 2 + 3 t^2 \right) \sqrt{1 - 4 t^2}}\]
\[\text{ Again  Putting 1 }- 4 t^2 = u^2 \]
\[ \Rightarrow - 8t \text{ dt } = 2u\text{  du}\]
\[ \Rightarrow t \text{ dt} = - \frac{u}{4} \text{ du }\]
\[ \therefore I = \frac{1}{4}\int\frac{u\text{  du}}{\left[ 2 + 3 \left( \frac{1 - u^2}{4} \right) \right] u}\]
\[ = \frac{1}{4}\int\frac{4 \text{ du}}{\left[ 8 + 3 - 3 u^2 \right]}\]
\[ = \int\frac{du}{11 - 3 u^2}\]
\[ = \frac{1}{3}\int\frac{du}{\frac{11}{3} - u^2}\]
\[ = \frac{1}{3}\int\frac{du}{\left( \sqrt{\frac{11}{3}} \right)^2 - u^2}\]
\[ = \frac{1}{3} \times \frac{1}{2 \times \frac{\sqrt{11}}{\sqrt{3}}} \text{ log} \left| \frac{\frac{\sqrt{11}}{\sqrt{3}} + u}{\frac{\sqrt{11}}{\sqrt{3}} - \text{ u}}
\right| + C\]
\[ = \frac{1}{2\sqrt{33}} \text{ log} \left| \frac{\sqrt{11} + \sqrt{3} \text{ u}}{\sqrt{11} - \sqrt{3} \text{ u}} \right| + C\]
\[ = \frac{1}{2\sqrt{33}} \text{ log }\left| \frac{\sqrt{11} + \sqrt{3} \sqrt{1 - 4 t^2}}{\sqrt{11} - \sqrt{3} \sqrt{1 - 4 t^2}} \right| + C\]
\[ = \frac{1}{2\sqrt{33}} \text{ log} \left| \frac{\sqrt{11} + \sqrt{3 - 12 t^2}}{\sqrt{11} - \sqrt{3 - 12 t^2}} \right| + C\]
\[ = \frac{1}{2\sqrt{33}} \text{ log} \left| \frac{\sqrt{11} + \sqrt{3 - \frac{12}{x^2}}}{\sqrt{11} - \sqrt{3 - \frac{12}{x^2}}} \right| + C\]
\[ = \frac{1}{2\sqrt{33}} \text{ log }\left| \frac{\sqrt{11}x + \sqrt{3 x^2 - 12}}{\sqrt{11}x - \sqrt{3 x^2 - 12}} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.32 [पृष्ठ १७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.32 | Q 13 | पृष्ठ १७६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int\frac{1}{1 - \sin x} dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

` ∫   cos  3x   cos  4x` dx  

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int x^3 \cos x^4 dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int x \cos^3 x\ dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{1 + \tan x} dx =\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×