मराठी

∫ X ( X + 1 ) ( X 2 + 1 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]
बेरीज

उत्तर

We have,

\[I = \int\frac{x dx}{\left( x + 1 \right) \left( x^2 + 1 \right)}\]

\[\text{Let }\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} = \frac{A}{x + 1} + \frac{Bx + C}{x^2 + 1}\]

\[ \Rightarrow \frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} = \frac{A \left( x^2 + 1 \right) + \left( Bx + C \right) \left( x + 1 \right)}{\left( x + 1 \right) \left( x^2 + 1 \right)}\]

\[ \Rightarrow x = A \left( x^2 + 1 \right) + B x^2 + Bx + Cx + C\]

\[ \Rightarrow x = \left( A + B \right) x^2 + \left( B + C \right) x + \left( A + C \right)\]

\[\text{Equating coefficients of like terms}\]

\[A + B = 0 . . . . . \left( 1 \right)\]

\[B + C = 1 . . . . . \left( 2 \right)\]

\[A + C = 0 . . . . . \left( 3 \right)\]

\[\text{Solving (1), (2) and (3), we get}\]

\[A = - \frac{1}{2}\]

\[B = \frac{1}{2}\]

\[C = \frac{1}{2}\]

\[ \therefore \frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} = - \frac{1}{2 \left( x + 1 \right)} + \frac{\frac{x}{2} + \frac{1}{2}}{x^2 + 1}\]

\[ \Rightarrow \int\frac{x dx}{\left( x + 1 \right) \left( x^2 + 1 \right)} = - \frac{1}{2}\int\frac{dx}{x + 1} + \frac{1}{2}\int\frac{x dx}{x^2 + 1} + \frac{1}{2}\int\frac{dx}{x^2 + 1}\]

\[\text{Let }x^2 + 1 = t\]

\[ \Rightarrow 2x dx = dt\]

\[ \Rightarrow x dx = \frac{dt}{2}\]

\[ \therefore I = - \frac{1}{2}\int\frac{dx}{x + 1} + \frac{1}{4}\int\frac{dt}{t} + \frac{1}{2}\int\frac{dx}{x^2 + 1^2}\]

\[ = - \frac{1}{2} \log \left| x + 1 \right| + \frac{1}{4} \log \left| t \right| + \frac{1}{2} \tan^{- 1} x + C'\]

\[ = - \frac{1}{2} \log \left| x + 1 \right| + \frac{1}{4} \log \left| x^2 + 1 \right| + \frac{1}{2} \tan^{- 1} x + C'\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 37 | पृष्ठ १७७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1}{1 - \sin x} dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int \sin^4 2x\ dx\]

\[\int \cos^3 (3x)\ dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×