Advertisements
Advertisements
प्रश्न
` ∫ 1/ {1+ cos 3x} ` dx
उत्तर
` ∫ 1/ {1+ cos 3x} ` dx
\[ = \int\frac{\left( 1 - \cos 3x \right)}{\left( 1 + \text{cos 3x} \right) \left( 1 - \cos 3x \right)}dx\]
\[ = \int\left( \frac{1 - \cos 3x}{1 - \cos^2 3x} \right) dx\]
\[ = \int\left( \frac{1 - \cos 3x}{\sin^2 3x} \right) dx\]
\[ = \int \text{cosec}^\text{2}\text{ 3x dx} - ∫cosec\ 3x \cot 3xdx\]
` = - {cot 3x} / 3 + {"cosec " 3x} / 3 + c `
` = 1/3 [ "cosec" 3x - cot 3x ] + c `
\[ = \frac{1}{3}\left[ \frac{1}{\sin 3x} - \frac{\cos 3x}{\sin 3x} \right] + C\]
\[ = \frac{1}{3} \left[ \frac{1 - \cos 3x}{\sin 3x} \right] + C\]
APPEARS IN
संबंधित प्रश्न
` ∫ {cosec x} / {"cosec x "- cot x} ` dx
` ∫ tan^5 x dx `
` = ∫1/{sin^3 x cos^ 2x} dx`
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]