मराठी

∫ 1 1 + Cos 3 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

` ∫  1/ {1+ cos   3x}  ` dx

बेरीज

उत्तर

` ∫  1/ {1+ cos   3x}  ` dx

\[ = \int\frac{\left( 1 - \cos 3x \right)}{\left( 1 + \text{cos  3x} \right) \left( 1 - \cos 3x \right)}dx\]

\[ = \int\left( \frac{1 - \cos 3x}{1 - \cos^2 3x} \right) dx\]

\[ = \int\left( \frac{1 - \cos 3x}{\sin^2 3x} \right) dx\]

\[ = \int \text{cosec}^\text{2}\text{ 3x dx} -  ∫cosec\ 3x \cot 3xdx\]

` = - {cot 3x} / 3 + {"cosec "  3x} / 3 + c `

` = 1/3 [ "cosec"   3x - cot 3x ] + c ` 

\[ = \frac{1}{3}\left[ \frac{1}{\sin 3x} - \frac{\cos 3x}{\sin 3x} \right] + C\]

\[ = \frac{1}{3} \left[ \frac{1 - \cos 3x}{\sin 3x} \right] + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.03 [पृष्ठ २३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.03 | Q 13 | पृष्ठ २३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int\frac{\cos x}{1 + \cos x} dx\]

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

\[\int \cos^2 \text{nx dx}\]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

` ∫  tan^5 x   sec ^4 x   dx `

` ∫      tan^5    x   dx `


` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×