मराठी

∫ Cos X Cos 3 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I }  = \int \frac{\cos x}{\cos 3x}dx\]
\[ = \int\frac{\cos x}{\left( 4 \cos^3 x - 3 \cos x \right)}dx \left[ \cos 3A = 4 \cos^3 A - 3 \cos A \right]\]
\[ = \int \frac{1}{4 \cos^2 x - 3}dx\]
\[\text{Dividing numerator and denominator by} \cos^2 x\]
\[ \Rightarrow I = \int \frac{\sec^2 x}{4 - 3 \sec^2 x} dx\]
\[ = \int \frac{\sec^2 x}{4 - 3\left( 1 + \tan^2 x \right)} dx\]
\[ = \int \frac{\sec^2 x}{1 - 3 \tan^2 x} dx\]
\[ = \int \frac{\sec^2 x}{1 - \left( \sqrt{3} \tan x \right)^2} dx\]
\[\text{ Let }\sqrt{3} \tan x = t\]
\[ \Rightarrow \sqrt{3} \sec^2 x \text{ dx }= dt\]
\[ \Rightarrow \sec^2 x \text{ dx } = \frac{dt}{\sqrt{3}}\]
\[ \therefore I = \frac{1}{\sqrt{3}} \int \frac{dt}{1^2 - t^2}\]
\[ = \frac{1}{\sqrt{3}} \times \frac{1}{2}\text{ ln } \left| \frac{1 + t}{1 - t} \right| + C\]
\[ = \frac{1}{2\sqrt{3}}\text{ ln } \left| \frac{1 + \sqrt{3} \tan x}{1 - \sqrt{3} \tan x} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.22 [पृष्ठ ११४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.22 | Q 4 | पृष्ठ ११४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

` ∫  sec^6   x  tan    x   dx `

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int \log_{10} x\ dx\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int \cos^5 x\ dx\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{1}{2 + \cos x} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×