Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I } = \int \frac{\cos x}{\cos 3x}dx\]
\[ = \int\frac{\cos x}{\left( 4 \cos^3 x - 3 \cos x \right)}dx \left[ \cos 3A = 4 \cos^3 A - 3 \cos A \right]\]
\[ = \int \frac{1}{4 \cos^2 x - 3}dx\]
\[\text{Dividing numerator and denominator by} \cos^2 x\]
\[ \Rightarrow I = \int \frac{\sec^2 x}{4 - 3 \sec^2 x} dx\]
\[ = \int \frac{\sec^2 x}{4 - 3\left( 1 + \tan^2 x \right)} dx\]
\[ = \int \frac{\sec^2 x}{1 - 3 \tan^2 x} dx\]
\[ = \int \frac{\sec^2 x}{1 - \left( \sqrt{3} \tan x \right)^2} dx\]
\[\text{ Let }\sqrt{3} \tan x = t\]
\[ \Rightarrow \sqrt{3} \sec^2 x \text{ dx }= dt\]
\[ \Rightarrow \sec^2 x \text{ dx } = \frac{dt}{\sqrt{3}}\]
\[ \therefore I = \frac{1}{\sqrt{3}} \int \frac{dt}{1^2 - t^2}\]
\[ = \frac{1}{\sqrt{3}} \times \frac{1}{2}\text{ ln } \left| \frac{1 + t}{1 - t} \right| + C\]
\[ = \frac{1}{2\sqrt{3}}\text{ ln } \left| \frac{1 + \sqrt{3} \tan x}{1 - \sqrt{3} \tan x} \right| + C\]
APPEARS IN
संबंधित प्रश्न
\[\int\left\{ x^2 + e^{\log x}+ \left( \frac{e}{2} \right)^x \right\} dx\]
\[\int\left( e^\text{log x} + \sin x \right) \text{ cos x dx }\]
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]
\[\int\frac{1}{2 + \cos x} \text{ dx }\]