मराठी

∫ 1 Cos ( X − a ) Cos ( X − B ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]
बेरीज

उत्तर

\[\int\frac{1}{\text{ cos } \left( x - a \right) \cdot \text{ cos} \left( x - b \right)}dx\]
\[ = \frac{1}{\text{ sin }\left( a - b \right)}\int\frac{\text{ sin }\left( a - b \right)}{\text{ cos}\left( x - a \right) \cdot \text{ cos}\left( x - b \right)} dx\]
\[ = \frac{1}{\text{ sin }\left( a - b \right)}\int\frac{\text{ sin }\left[ \left( x - b \right) - \left( x - a \right) \right]}{\text{ cos}\left( x - a \right) \cdot \text{ cos}\left( x - b \right)} dx\]
\[ = \frac{1}{\text{ sin }\left( a - b \right)}\int\frac{\text{ sin }\left( x - b \right) \cdot \text{ cos}\left( x - a \right) - \text{ cos}\left( x - b \right) \cdot \text{ sin }\left( x - a \right)}{\text{ cos}\left( x - a \right) \cdot \text{ cos}\left( x - b \right)}\]
\[ = \frac{1}{\text{ sin }\left( a - b \right)}\int\left[ \frac{\text{ sin }\left( x - b \right) \cdot \text{ cos}\left( x - a \right)}{\text{ cos}\left( x - a \right) \cdot \text{ cos}\left( x - b \right)} - \frac{\text{ cos}\left( x - b \right) \cdot \text{ sin }\left( x - a \right)}{\text{ cos}\left( x - a \right) \cdot \text{ cos}\left( x - b \right)} \right] dx\]
\[ = \frac{1}{\text{ sin }\left( a - b \right)}\int\left[ \text{ tan }\left( x - b \right) - \text{ tan }\left( x - a \right) \right] dx\]
\[ = \frac{1}{\text{ sin }\left( a - b \right)}\int\text{ tan }\left( x - b \right) dx - \int\text{ tan } \left( x - a \right) dx\]
\[ = \frac{1}{\text{ sin }\left( a - b \right)}\left[ \text{ ln }\left| \text{ sec }\left( x - b \right) \right| - \text{ ln } \left| \text{ sec }\left( x - a \right) \right| \right] + C\]
\[ = \frac{1}{\text{ sin }\left( a - b \right)}\left[ \text{ ln }\left| \text{ cos }\left( x - a \right) \right| - \text{ ln }\left| \text{ cos}\left( x - b \right) \right| \right] + C\]
\[ = \frac{1}{\text{ sin }\left( a - b \right)}\left[ \text{ ln }\left| \frac{\text{ cos}\left( x - a \right)}{\text{ cos}\left( x - b \right)} \right| \right] + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 25 | पृष्ठ २०३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int x^3 \sin x^4 dx\]

` ∫  tan^5 x   sec ^4 x   dx `

\[\int \sec^4 2x \text{ dx }\]

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int \cot^4 x\ dx\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int \log_{10} x\ dx\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×