मराठी

∫ Cos − 1 ( 1 − 2 X 2 ) Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]
बेरीज

उत्तर

\[\text{We have}, \]

\[I = \int \cos^{- 1} \left( 1 - 2 x^2 \right)dx\]

\[\text{ Putting x }= \sin \theta\]

\[ \Rightarrow dx = \cos \text{ θ   dθ}\]

\[ \therefore I = \int \cos^{- 1} \left( 1 - 2 \sin^2 \theta \right) \cos \text{ θ   dθ}\]

\[ = \int \cos^{- 1} \left( \cos 2\theta \right) \cos \text{ θ   dθ}\]

\[ = 2\int \theta_I \text {cos}_{II} \text{ θ   dθ}\]

\[ = 2\left[ \theta \sin \theta - \int1 \sin \text{ θ   dθ}\right]\]

\[ = 2\left[ \theta \sin \theta + \cos \theta \right] + C\]

\[ = 2\left[ \sin^{- 1} x \times x + \sqrt{1 - x^2} \right] + C\]

\[ = 2\left[ x \sin^{- 1} x + \sqrt{1 - x^2} \right] + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 116 | पृष्ठ २०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

` ∫  tan^3    x   sec^2  x   dx  `

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int x^3 \cos x^2 dx\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int {cosec}^4 2x\ dx\]


\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×