Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{We have}, \]
\[I = \int \cos^{- 1} \left( 1 - 2 x^2 \right)dx\]
\[\text{ Putting x }= \sin \theta\]
\[ \Rightarrow dx = \cos \text{ θ dθ}\]
\[ \therefore I = \int \cos^{- 1} \left( 1 - 2 \sin^2 \theta \right) \cos \text{ θ dθ}\]
\[ = \int \cos^{- 1} \left( \cos 2\theta \right) \cos \text{ θ dθ}\]
\[ = 2\int \theta_I \text {cos}_{II} \text{ θ dθ}\]
\[ = 2\left[ \theta \sin \theta - \int1 \sin \text{ θ dθ}\right]\]
\[ = 2\left[ \theta \sin \theta + \cos \theta \right] + C\]
\[ = 2\left[ \sin^{- 1} x \times x + \sqrt{1 - x^2} \right] + C\]
\[ = 2\left[ x \sin^{- 1} x + \sqrt{1 - x^2} \right] + C\]
APPEARS IN
संबंधित प्रश्न
If f' (x) = x − \[\frac{1}{x^2}\] and f (1) \[\frac{1}{2}, find f(x)\]
Integrate the following integrals:
` = ∫1/{sin^3 x cos^ 2x} dx`
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
\[\int {cosec}^4 2x\ dx\]
\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]
Find: `int (3x +5)/(x^2+3x-18)dx.`