Advertisements
Advertisements
प्रश्न
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]
बेरीज
उत्तर
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]
\[\text{Let }\sin^{- 1} x = t\]
\[ \Rightarrow \frac{1}{\sqrt{1 - x^2}}dx = dt\]
\[Now, \int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx \]
\[ = \int t^3 dt\]
\[ = \frac{t^4}{4} + C\]
\[ = \frac{\left( \sin^{- 1} x \right)^4}{4} + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]
\[\int \tan^2 \left( 2x - 3 \right) dx\]
` ∫ cos 3x cos 4x` dx
\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]
\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]
\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]
\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]
\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]
\[\int {cosec}^4 \text{ 3x } \text{ dx } \]
\[\int \sin^3 x \cos^5 x \text{ dx }\]
\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]
\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]
\[\int\frac{x}{x^2 + 3x + 2} dx\]
\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]
\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]
\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]
\[\int\frac{1}{1 - \cot x} dx\]
\[\int x^2 e^{- x} \text{ dx }\]
\[\int\cos\sqrt{x}\ dx\]
\[\int e^x \left( \cot x + \log \sin x \right) dx\]
\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{ dx }\]
\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{ dx }\]
\[\int\frac{x^2 + 1}{x^2 - 1} dx\]
\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]
Evaluate the following integral:
\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]
\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]
Write a value of
\[\int e^{3 \text{ log x}} x^4\text{ dx}\]
\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]
\[\int \text{cosec}^2 x \text{ cos}^2 \text{ 2x dx} \]
\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]
\[\int \tan^5 x\ dx\]
\[\int x \sin^5 x^2 \cos x^2 dx\]
\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]
\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]
\[\int {cosec}^4 2x\ dx\]
\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]
Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .