मराठी

∫ X + 1 X ( 1 + X E X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]
बेरीज

उत्तर

We have,

\[I = \int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]
\[I = \int\frac{e^x \left( x + 1 \right)}{e^x x \left( 1 + x e^x \right)} dx\]
\[\text{Put }e^x = t\]
\[ \Rightarrow e^x \left( x + 1 \right)dx = dt\]
\[I = \int\frac{dt}{t \left( 1 + t \right)} . . . . . \left( 1 \right)\]
Let,
\[\frac{1}{t \left( 1 + t \right)} = \frac{A}{t} + \frac{B}{1 + t}\]
\[ \Rightarrow 1 = A\left( t + 1 \right) + Bt . . . . . \left( 2 \right)\]
\[\text{Putting t= 0 in (2), we obtain A = 1}\]
\[\text{Putting t = -1 in (2), we obtain B = -1}\]
\[I = \int\left( \frac{1}{t} - \frac{1}{1 + t} \right) dt\]
\[I = \log\left| t \right| - \log\left| t + 1 \right| + C\]
\[I = \log\left| \frac{t}{t + 1} \right| + C\]
\[I = \log\left| \frac{x e^x}{x e^x + 1} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 62 | पृष्ठ १७८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{1}{1 - \sin x} dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

\[\int \sin^2 \frac{x}{2} dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int x^3 \cos x^4 dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int x \sin^3 x\ dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int \cos^5 x\ dx\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int x^2 \tan^{- 1} x\ dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×