मराठी

∫ X √ 2 X + 3 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int x\sqrt{2x + 3} \text{ dx }\]
बेरीज

उत्तर

\[ \text{  Let I }= \int \text{ x}\sqrt{2x + 3} \text{ dx }\]
\[ \text{  Putting 2x + 3 = t }\]
\[ \Rightarrow x = \frac{t - 3}{2}\]
\[ \Rightarrow 2dx = dt\]
\[ \Rightarrow dx = \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int\left( \frac{t - 3}{2} \right) \sqrt{t} \text{ dt }\]
\[ = \frac{1}{4}\int\left( t - 3 \right) \sqrt{t} \text{ dt}\]
\[ = \frac{1}{4}\int\left( t^\frac{3}{2} - 3 t^\frac{1}{2} \right) \text{ dt }\]
\[ = \frac{1}{4}\left[ \frac{t^\frac{3}{2} + 1}{\frac{3}{2} + 1} - 3 \frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] + C\]
\[ = \frac{1}{4} \times \frac{2}{5} t^\frac{5}{2} - \frac{3}{4} \times \frac{2}{3}\text t^\frac{3}{2} + C\]
\[ = \frac{1}{10} \text{ t}^\frac{5}{2} - 2 t^\frac{3}{2} + C\]
\[ = \frac{1}{10} \left( 2x + 3 \right)^\frac{5}{2} - \frac{1}{2} \left( 2x + 3 \right)^\frac{3}{2} + C .........\left[ \because t = 2x + 3 \right]\]
\[ = \frac{1}{10} \left( 2x + 3 \right)^\frac{5}{2} - \frac{1}{2} \left( 2x + 3 \right)^\frac{3}{2} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 34 | पृष्ठ २०३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×