Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I} = \int\frac{\log \left( \log x \right) dx}{x}\]
\[\text{ Putting log x = t}\]
\[ \Rightarrow \frac{1}{x} dx = dt\]
\[ \therefore I = \int 1_{II} \cdot \log _I t \cdot \text{ dt}\]
\[ = \log t\int1\text{ dt }- \int\left\{ \frac{d}{dt}\left( \log t \right)\int1 dt \right\}dt\]
\[ = \log t \cdot t - \int\frac{1}{t} \times t\text{ dt}\]
\[ = \log t \cdot t - \int dt\]
\[ = \log t \cdot t - t + C\]
\[ = t \left( \log t - 1 \right) + C\]
\[ = \log x \left( \text{ log} \left( \log x \right) - 1 \right) + C\]
APPEARS IN
संबंधित प्रश्न
If f' (x) = x + b, f(1) = 5, f(2) = 13, find f(x)
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
\[\int \sec^4 x\ dx\]
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]