मराठी

∫ Log ( 1 + 1 X ) X ( 1 + X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]
बेरीज

उत्तर

\[\int\frac{\log \left( 1 + \frac{1}{x} \right)}{x\left( 1 + x \right)}dx\]

\[Let, \log \left( 1 + \frac{1}{x} \right) = t\]

\[ \Rightarrow \frac{1}{1 + \frac{1}{x}} \times \frac{- 1}{x^2} = \frac{dt}{dx}\]

\[ \Rightarrow \left( \frac{x}{x + 1} \right) \times \frac{- 1}{x^2} = \frac{dt}{dx}\]

\[ \Rightarrow \frac{- dx}{x\left( x + 1 \right)} = dt\]

\[ \Rightarrow \frac{dx}{x\left( x + 1 \right)} = - dt\]

\[Now, \int\frac{\log \left( 1 + \frac{1}{x} \right)}{x\left( 1 + x \right)}dx\]

= ∫ t   . (-dt)

\[ = \frac{- t^2}{2} + C\]

\[ = - \frac{1}{2} \left\{ \log\left( 1 + \frac{1}{x} \right) \right\}^2 + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.09 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.09 | Q 2 | पृष्ठ ५७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

` ∫   tan   x   sec^4  x   dx  `


` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int x \cos^3 x\ dx\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×