Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\frac{\log \left( 1 + \frac{1}{x} \right)}{x\left( 1 + x \right)}dx\]
\[Let, \log \left( 1 + \frac{1}{x} \right) = t\]
\[ \Rightarrow \frac{1}{1 + \frac{1}{x}} \times \frac{- 1}{x^2} = \frac{dt}{dx}\]
\[ \Rightarrow \left( \frac{x}{x + 1} \right) \times \frac{- 1}{x^2} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{- dx}{x\left( x + 1 \right)} = dt\]
\[ \Rightarrow \frac{dx}{x\left( x + 1 \right)} = - dt\]
\[Now, \int\frac{\log \left( 1 + \frac{1}{x} \right)}{x\left( 1 + x \right)}dx\]
= ∫ t . (-dt)
\[ = \frac{- t^2}{2} + C\]
\[ = - \frac{1}{2} \left\{ \log\left( 1 + \frac{1}{x} \right) \right\}^2 + C\]
APPEARS IN
संबंधित प्रश्न
` ∫ tan x sec^4 x dx `
` ∫ \sqrt{tan x} sec^4 x dx `
\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int\sin x \sin 2x \text{ sin 3x dx }\]
\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]