मराठी

∫ Sin 3 ( 2 X + 1 ) Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]

बेरीज

उत्तर

\[\int \sin^3 \left( 2x + 1 \right)dx\]

\[ = \frac{1}{4}\int\left[ 3 \sin \left( 2x + 1 \right) - \sin \left( 3\left( 2x + 1 \right) \right) \right]dx \left[ \therefore \sin \left( 3\theta \right) = 3 \sin\theta - 4 \sin^3 \theta \Rightarrow \sin^3 \theta = \frac{1}{4}\left( 3\sin \theta - \sin \left( 3\theta \right) \right) \right] \]

\[ = \frac{3}{4}\int\sin \left( 2x + 1 \right)dx - \frac{1}{4}\int\sin \left( 6x + 3 \right)dx\]

\[ = \frac{3}{4}\left[ - \frac{\cos \left( 2x + 1 \right)}{2} \right] - \frac{1}{4}\left[ - \frac{\cos \left( 6x + 3 \right)}{6} \right] + C\]

\[ = \frac{- 3}{8}\cos \left( 2x + 1 \right) + \frac{1}{24} \cos \left( 6x + 3 \right) + C\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.06 [पृष्ठ ३६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.06 | Q 2 | पृष्ठ ३६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×