मराठी

∫ X 3 − 3 X 2 + 5 X − 7 + X 2 a X 2 X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]
बेरीज

उत्तर

\[\int\left( \frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} \right)dx\]
\[ = \int\left( \frac{x^3}{2 x^2} - \frac{3 x^2}{2 x^2} + \frac{5x}{2 x^2} - \frac{7}{2 x^2} + \frac{x^2 a^x}{2 x^2} \right)dx\]
\[ = \int\left( \frac{x}{2} - \frac{3}{2} + \frac{5}{2x} - \frac{7}{2} x^{- 2} + \frac{a^x}{2} \right)dx\]
\[ = \frac{1}{2}\ \text{∫  x dx} - \frac{3}{2}\  ∫ dx + \frac{5}{2} ∫ \frac{dx}{x} - \frac{7}{2}\int x^{- 2} dx + \frac{1}{2}\int a^x dx\]
\[ = \frac{1}{2}\left[ \frac{x^2}{2} \right] - \frac{3}{2}x + \frac{5}{2}\ln \left| x \right| - \frac{7}{2} \left[ \frac{x^{- 2 + 1}}{- 2 + 1} \right] + \frac{1}{2}\left[ \frac{a^x}{\ln a} \right] + C\]
\[ = \frac{x^2}{4} - \frac{3}{2}x + \frac{5}{2}\ln \left| x \right| + \frac{7}{2x} + \frac{a^x}{2 \ln a} + C\]
\[ = \frac{1}{2}\left[ \frac{x^2}{2} - 3x + 5 \ln \left| x \right| + \frac{7}{x} + \frac{a^x}{\ln a} \right] + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.02 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.02 | Q 41 | पृष्ठ १५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


` ∫    cos  mx  cos  nx  dx `

 


\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

`int 1/(cos x - sin x)dx`

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int \cos^3 (3x)\ dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int x^2 \tan^{- 1} x\ dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×