मराठी

∫ X 2 + 1 X 2 − 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]
बेरीज

उत्तर

\[\int\left( \frac{x^2 + 1}{x^2 - 1} \right)dx\]
\[ = \int\left( \frac{x^2 - 1 + 2}{x^2 - 1} \right)dx\]
\[ = \int dx + 2\int\frac{1}{x^2 - 1^2}dx\]
\[ = \int dx + 2\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right)}dx . . . \left( 1 \right)\]
\[ \therefore \frac{1}{\left( x - 1 \right)\left( x + 1 \right)} = \frac{A}{x - 1} + \frac{B}{x + 1}\]
\[ \Rightarrow \frac{1}{\left( x - 1 \right) \left( x + 1 \right)} = \frac{A \left( x + 1 \right) + B\left( x - 1 \right)}{\left( x - 1 \right) \left( x + 1 \right)}\]
\[ \Rightarrow 1 = A \left( x + 1 \right) B \left( x - 1 \right) ..........(2)\]
\[\text{Putting }x + 1 = 0\text{ or }x = - 1\text{ in eq. (2)}\]
\[ \Rightarrow 1 = A \times 0 + B \left( - 1 - 1 \right)\]
\[ \Rightarrow B = \frac{- 1}{2}\]
\[\text{Putting }x - 1 = 0\text{ or }x = 1\text{ in eq (2)}\]
\[ \Rightarrow 1 = A \left( 1 + 1 \right) + B \times 0\]
\[ \Rightarrow A = \frac{1}{2}\]
\[ \therefore \frac{1}{\left( x - 1 \right)\left( x + 1 \right)} = \frac{1}{2\left( x - 1 \right)} - \frac{1}{2\left( x + 1 \right)} ..........(3)\]
From eq. (1) and (3)
\[\int\left( \frac{x^2 + 1}{x^2 - 1} \right)dx = \int dx + 2\int\left[ \frac{1}{2 \left( x - 1 \right)} - \frac{1}{2 \left( x + 1 \right)} \right]dx\]
\[ = \int dx + \int\frac{dx}{x - 1} - \int\frac{dx}{x + 1}\]
\[ = x + \ln \left| x - 1 \right| = - \ln \left| x + 1 \right| + C\]
\[ = x + \ln \left| \frac{x - 1}{x + 1} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 5 | पृष्ठ १७६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int\frac{1}{1 - \sin x} dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


` ∫  { x^2 dx}/{x^6 - a^6} dx `

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×