मराठी

∫ ( 1 + X 2 ) Cos 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]

बेरीज

उत्तर

\[\text{ Let  I} = \int\left( 1 + x^2 \right) \cdot \cos 2x \cdot dx\]
\[ = \int\text{ cos  2x  dx } + \int x^2 \cdot \text{ cos  2x  dx }\]
\[ = \frac{\sin 2x}{2} + I_1 \text{ where I}_1 = \int x^2\text{ cos  2x  dx } . . . \left( 1 \right)\]
\[ I_1 = \int {x^2}_I \cos_{II} 2x \text{  dx }\]
\[ = x^2 \int\text{ cos  2x  dx } - \int\left\{ \frac{d}{dx}\left( x^2 \right)\int \text{ cos  2x  dx } \right\}dx\]
\[ = x^2 \cdot \frac{\sin 2x}{2} - \int\frac{2x \times \sin 2x}{2} dx\]
\[ = \frac{x^2 \cdot \sin 2x}{2} - \int x_I \cdot \sin_{II} 2x\text{  dx }\]
\[ = \frac{x^2 \cdot \sin 2x}{2} - \left[ x\int \text{ sin 2x dx }- \int\left\{ \frac{d}{dx}\left( x \right)\int\text{ sin 2x dx} \right\}dx \right]\]
\[ = \frac{x^2 \cdot \sin 2x}{2} - \left[ x\left( \frac{- \cos 2x}{2} \right) - \int1 \cdot \left( \frac{- \cos 2x}{2} \right) dx \right]\]
\[ = \frac{x^2 \cdot \sin 2x}{2} + \frac{x \cdot \cos 2x}{2} - \frac{\sin 2x}{4} . . . \left( 2 \right)\]
\[\text{ From }\left( 1 \right) \text{ and }\left( 2 \right)\]
\[ \therefore I = \frac{\sin 2x}{2} + \frac{x^2 \sin 2x}{2} + \frac{x \cos 2x}{2} - \frac{\sin 2x}{4} + C\]
\[ = \left( x^2 + 1 \right) \frac{\sin 2x}{2} + \frac{x \cos 2x}{2} - \frac{\sin 2x}{4} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 91 | पृष्ठ २०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int \tan^4 x\ dx\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×