मराठी

∫ X ( Sec 2 X − 1 Sec 2 X + 1 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]
बेरीज

उत्तर

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right)dx\]
\[ = \int x \left( \frac{\frac{1}{\cos 2x} - 1}{\frac{1}{\cos 2x} + 1} \right)dx\]
\[ = \int x \left( \frac{1 - \cos 2x}{1 + \cos 2x} \right)dx\]
\[ = \int x \left( \frac{2 \sin^2 x}{2 \cos^2 x} \right)dx \left[ \because \left( 1 - \cos 2x \right) = 2 \sin^2 x and \left( 1 + \cos 2x \right) = 2 \cos^2 x \right]\]
\[ = \int x . \tan^2 \text{ x dx  }\]
\[ = \int x . \left( \sec^2 x - 1 \right) dx\]
\[ = \int x_I . \sec^2_{II}   \text{ x   dx } - \int \text{ x dx }\]
\[ = x\int \sec^2\text{  x dx }- \int\left\{ \frac{d}{dx}\left( x \right)\int\sec^2  \text{ x  dx }\right\}dx - \frac{x^2}{2} + C_1 \]
\[ = x \tan x - \int1 . \text{ tan x dx } - \frac{x^2}{2} + C_1 \]
\[ = x \tan x - \text{ log  }\left| \sec x \right| - \frac{x^2}{2} + C_2 + C_1 \]
\[ = x \tan x - \text{ log }\left| \sec x \right| - \frac{x^2}{2} + C \left( \text{ where C} = C_1 + C_2 \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.25 | Q 33 | पृष्ठ १३४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

`∫     cos ^4  2x   dx `


\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

` ∫  tan^5 x   sec ^4 x   dx `

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int x \sin x \cos x\ dx\]

 


\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int \sin^4 2x\ dx\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int {cosec}^4 2x\ dx\]


\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×