Advertisements
Advertisements
प्रश्न
\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]
बेरीज
उत्तर
\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x \cdot e^x \right)} dx\]
\[\text{Let x e}^x = t\]
\[ \Rightarrow \left( 1 \cdot e^x + \text{x e}^x \right) = \frac{dt}{dx}\]
\[ \Rightarrow \left( x + 1 \right) e^x dx = dt\]
\[Now, \int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x \cdot e^x \right)} dx\]
\[ = \int\frac{dt}{\cos^2 t}\]
\[ = \int \sec^2 \text{t dt}\]
\[ = \tan \left( t \right) + C\]
` = tan ( x e^x) + C `
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\]
\[\int\frac{1 - \cos x}{1 + \cos x} dx\]
\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]
\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]
\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]
` ∫ tan 2x tan 3x tan 5x dx `
\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]
\[\int x^3 \cos x^4 dx\]
\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]
\[\int\frac{x^2}{\sqrt{x - 1}} dx\]
\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]
\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]
\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{ dx }\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]
\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]
\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]
` ∫ x tan ^2 x dx
\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]
\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]
\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]
\[\int\sqrt{2x - x^2} \text{ dx}\]
\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]
\[\int\frac{x^2 + 1}{x^2 - 1} dx\]
\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int \cot^4 x\ dx\]
\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]
\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{ dx }\]
\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]
\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]
\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]
\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]