मराठी

∫ 3 X + 1 √ 5 − 2 X − X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I }= \int\frac{\left( 3x + 1 \right) dx}{\sqrt{5 - 2x - x^2}}\]
\[\text{ Consider,} \]
\[3x + 1 = A \frac{d}{dx} \left( 5 - 2x - x^2 \right) + B\]
\[ \Rightarrow 3x + 1 = A \left( - 2 - 2x \right) + B\]
\[ \Rightarrow 3x + 1 = \left( - 2A \right) x + \left( - 2A + B \right)\]
\[\text{Equating Coefficients of like terms}\]
\[ - 2A = 3\]
\[ \Rightarrow A = - \frac{3}{2}\]
\[\text{ And }\]
\[ - 2A + B = 1\]
\[ \Rightarrow - 2 \times - \frac{3}{2} + B = 1\]
\[ \Rightarrow B = - 2\]
\[ \therefore I = \int\left[ \frac{- \frac{3}{2} \left( - 2 - 2x \right) - 2}{\sqrt{5 - 2x - x^2}} \right] dx\]
\[ = - \frac{3}{2}\int\frac{\left( - 2 - 2x \right) dx}{\sqrt{5 - 2x - x^2}} - 2\int\frac{dx}{\sqrt{5 - 2x - x^2}}\]
\[ = - \frac{3}{2}\int\frac{\left( - 2 - 2x \right) dx}{\sqrt{5 - 2x - x^2}} - 2\int\frac{dx}{\sqrt{5 - \left( x^2 + 2x \right)}}\]
\[ = - \frac{3}{2}\int\frac{\left( - 2 - 2x \right) dx}{\sqrt{5 - 2x - x^2}} - 2\int\frac{dx}{\sqrt{5 - \left( x^2 + 2x + 1 - 1 \right)}}\]
\[ = - \frac{3}{2}\int\frac{\left( - 2 - 2x \right) dx}{\sqrt{5 - 2x - x^2}} - 2 \int\frac{dx}{\sqrt{6 - \left( x + 1 \right)^2}}\]
\[ = - \frac{3}{2}\int\frac{\left( - 2 - 2x \right) dx}{\sqrt{5 - 2x - x^2}} - 2\int\frac{dx}{\sqrt{\left( \sqrt{6} \right)^2 - \left( x + 1 \right)^2}}\]
\[\text{ Putting, }5 - 2x - x^2 = t\]
\[ \Rightarrow \left( - 2 - 2x \right) dx = dt\]
\[\text{ Then, }\]
\[I = - \frac{3}{2}\int\frac{dt}{\sqrt{t}} - 2 \sin^{- 1} \left( \frac{x + 1}{\sqrt{6}} \right) + C_1 \]
\[ = - \frac{3}{2} \times 2\sqrt{t} - 2 \sin^{- 1} \left( \frac{x + 1}{\sqrt{6}} \right) + C\]
\[ = - 3\sqrt{5 - 2x - x^2} - 2 \sin^{- 1} \left( \frac{x + 1}{\sqrt{6}} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.21 [पृष्ठ ११०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.21 | Q 13 | पृष्ठ ११०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int \sin^5 x \text{ dx }\]

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int \sec^4 x\ dx\]


\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×