हिंदी

∫ 3 X + 1 √ 5 − 2 X − X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
योग

उत्तर

\[\text{ Let I }= \int\frac{\left( 3x + 1 \right) dx}{\sqrt{5 - 2x - x^2}}\]
\[\text{ Consider,} \]
\[3x + 1 = A \frac{d}{dx} \left( 5 - 2x - x^2 \right) + B\]
\[ \Rightarrow 3x + 1 = A \left( - 2 - 2x \right) + B\]
\[ \Rightarrow 3x + 1 = \left( - 2A \right) x + \left( - 2A + B \right)\]
\[\text{Equating Coefficients of like terms}\]
\[ - 2A = 3\]
\[ \Rightarrow A = - \frac{3}{2}\]
\[\text{ And }\]
\[ - 2A + B = 1\]
\[ \Rightarrow - 2 \times - \frac{3}{2} + B = 1\]
\[ \Rightarrow B = - 2\]
\[ \therefore I = \int\left[ \frac{- \frac{3}{2} \left( - 2 - 2x \right) - 2}{\sqrt{5 - 2x - x^2}} \right] dx\]
\[ = - \frac{3}{2}\int\frac{\left( - 2 - 2x \right) dx}{\sqrt{5 - 2x - x^2}} - 2\int\frac{dx}{\sqrt{5 - 2x - x^2}}\]
\[ = - \frac{3}{2}\int\frac{\left( - 2 - 2x \right) dx}{\sqrt{5 - 2x - x^2}} - 2\int\frac{dx}{\sqrt{5 - \left( x^2 + 2x \right)}}\]
\[ = - \frac{3}{2}\int\frac{\left( - 2 - 2x \right) dx}{\sqrt{5 - 2x - x^2}} - 2\int\frac{dx}{\sqrt{5 - \left( x^2 + 2x + 1 - 1 \right)}}\]
\[ = - \frac{3}{2}\int\frac{\left( - 2 - 2x \right) dx}{\sqrt{5 - 2x - x^2}} - 2 \int\frac{dx}{\sqrt{6 - \left( x + 1 \right)^2}}\]
\[ = - \frac{3}{2}\int\frac{\left( - 2 - 2x \right) dx}{\sqrt{5 - 2x - x^2}} - 2\int\frac{dx}{\sqrt{\left( \sqrt{6} \right)^2 - \left( x + 1 \right)^2}}\]
\[\text{ Putting, }5 - 2x - x^2 = t\]
\[ \Rightarrow \left( - 2 - 2x \right) dx = dt\]
\[\text{ Then, }\]
\[I = - \frac{3}{2}\int\frac{dt}{\sqrt{t}} - 2 \sin^{- 1} \left( \frac{x + 1}{\sqrt{6}} \right) + C_1 \]
\[ = - \frac{3}{2} \times 2\sqrt{t} - 2 \sin^{- 1} \left( \frac{x + 1}{\sqrt{6}} \right) + C\]
\[ = - 3\sqrt{5 - 2x - x^2} - 2 \sin^{- 1} \left( \frac{x + 1}{\sqrt{6}} \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.21 [पृष्ठ ११०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.21 | Q 13 | पृष्ठ ११०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int \left( e^x + 1 \right)^2 e^x dx\]

` ∫   cos  3x   cos  4x` dx  

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

`int 1/(cos x - sin x)dx`

\[\int x^2 \cos 2x\ \text{ dx }\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int\cos\sqrt{x}\ dx\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int \sin^3 \sqrt{x}\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×