Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{Let I} = \int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5}dx\]
\[\text{Putting}\ \sin 2x + \tan x - 5 = t\]
\[ \Rightarrow 2\cos 2x + \sec^2 x = \frac{dt}{dx}\]
\[ \Rightarrow \left( 2\cos 2x + \sec^2 x \right)dx = dt\]
\[ \therefore I = \int\frac{1}{t}dt\]
\[ = \text{ln} \left| t \right| + C\]
\[ = \text{ln} \left| \sin 2x + \tan x - 5 \right| + C \left[ \because t = \sin 2x + \tan x - 5 \right]\]
APPEARS IN
संबंधित प्रश्न
` ∫ tan x sec^4 x dx `
` ∫ \sqrt{tan x} sec^4 x dx `
Evaluate the following integral:
If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int {cosec}^4 2x\ dx\]
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]