हिंदी

∫ x 3 ( log x ) 2 dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int x^3 \left( \log x \right)^2\text{  dx }\]
योग

उत्तर

\[\int {x^3}_{II} \cdot \left( \log_I x \right)^2 \cdot dx\]
\[ = \left( \log x^2 \right)\int x^3 dx - \int\frac{2 \log x}{x} \times \frac{x^4}{4} \text{  dx} \]
\[ = \left( \log x \right)^2 \times \frac{x^4}{4} - \frac{1}{2}\int \log_I x  \cdot {x^3}_{II} \text{  dx }\]
\[ = \left( \log x \right)^2 \times \frac{x^4}{4} - \frac{1}{2}\left[ \log x\int x^3 dx - \int\left\{ \frac{d}{dx}\left( \log x \right)\int x^3 dx \right\}dx \right]\]
\[ = \left( \log x \right)^2 \times \frac{x^4}{4} - \frac{1}{2} \left[ \log x \cdot \frac{x^4}{4} - \int\frac{1}{x} \times \frac{x^4}{4}dx \right]\]
\[ = \left( \log x \right)^2 \times \frac{x^4}{4} - \frac{1}{2} \left[ \log x \cdot \frac{x^4}{4} - \frac{1}{4}\int x^3 dx \right]\]
\[ = \left( \log x \right)^2 \times \frac{x^4}{4} - \frac{1}{2} \left[ \log x \cdot \frac{x^4}{4} - \frac{x^4}{16} \right] + C\]
\[ = \left( \log x \right)^2 \times \frac{x^4}{4} - \frac{\log x \cdot x^4}{8} + \frac{x^4}{32} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 100 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{1 - \sin x}{x + \cos x} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int \cot^6 x \text{ dx }\]

\[\int \sin^5 x \cos x \text{ dx }\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int \cot^4 x\ dx\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×