Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I }= \int\frac{\log \left( 1 - x \right)}{x^2}dx\]
\[ = \int \frac{1}{x^2}_{II} \log \left( 1_I - x \right) \text{ dx}\]
\[ = \text{ log }\left( 1 - x \right)\int x^{- 2} dx - \int\frac{- 1}{1 - x} \times \left( \frac{x^{- 2 + 1}}{- 2 + 1} \right) dx\]
\[ = \text{ log} \left( 1 - x \right) \left[ \frac{x^{- 2 + 1}}{- 2 + 1} \right] + \int\frac{- 1}{\left( 1 - x \right) x}dx\]
\[ = \text{ log} \left( 1 - x \right) \times \left( - \frac{1}{x} \right) + \int\frac{1}{x^2 - x}dx\]
\[ = - \frac{\text{ log} \left( 1 - x \right)}{x} + \int\frac{1}{x^2 - x + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}dx\]
\[ = - \frac{\text{ log }\left( 1 - x \right)}{x} + \int\frac{1}{\left( x - \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}dx\]
\[ = - \frac{\text{ log }\left( 1 - x \right)}{x} + \frac{1}{2 \times \frac{1}{2}} \text{ log} \left| \frac{x - \frac{1}{2} - \frac{1}{2}}{x - \frac{1}{2} + \frac{1}{2}} \right| + C\]
\[ = - \frac{\text{ log }\left( 1 - x \right)}{x} + \text{ log} \left| \frac{x - 1}{x} \right| + C\]
\[ = - \frac{\text{ log} \left( 1 - x \right)}{x} + \text{ log }\left| \left( x - 1 \right) \right| - \log x + C\]
\[ = - \frac{\text{ log} \left| 1 - x \right|}{x} + \text{ log }\left| 1 - x \right| - \text{ log }\left| x \right| + C\]
\[ = \left( 1 - \frac{1}{x} \right) \text{ log} \left| 1 - x \right| - \text{ log} \left| x \right| + C\]
APPEARS IN
संबंधित प्रश्न
` ∫ 1 /{x^{1/3} ( x^{1/3} -1)} ` dx
\[\int\left( e^\text{log x} + \sin x \right) \text{ cos x dx }\]
If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then
\[\int\sin x \sin 2x \text{ sin 3x dx }\]
\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]