हिंदी

∫ Log ( 1 − X ) X 2 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]
योग

उत्तर

\[\text{ Let I }= \int\frac{\log \left( 1 - x \right)}{x^2}dx\]
\[ = \int \frac{1}{x^2}_{II} \log \left( 1_I - x \right) \text{ dx}\]
\[ = \text{ log }\left( 1 - x \right)\int x^{- 2} dx - \int\frac{- 1}{1 - x} \times \left( \frac{x^{- 2 + 1}}{- 2 + 1} \right) dx\]
\[ = \text{ log} \left( 1 - x \right) \left[ \frac{x^{- 2 + 1}}{- 2 + 1} \right] + \int\frac{- 1}{\left( 1 - x \right) x}dx\]
\[ = \text{ log} \left( 1 - x \right) \times \left( - \frac{1}{x} \right) + \int\frac{1}{x^2 - x}dx\]
\[ = - \frac{\text{ log} \left( 1 - x \right)}{x} + \int\frac{1}{x^2 - x + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}dx\]
\[ = - \frac{\text{ log }\left( 1 - x \right)}{x} + \int\frac{1}{\left( x - \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}dx\]
\[ = - \frac{\text{ log }\left( 1 - x \right)}{x} + \frac{1}{2 \times \frac{1}{2}} \text{ log} \left| \frac{x - \frac{1}{2} - \frac{1}{2}}{x - \frac{1}{2} + \frac{1}{2}} \right| + C\]
\[ = - \frac{\text{ log }\left( 1 - x \right)}{x} + \text{ log} \left| \frac{x - 1}{x} \right| + C\]
\[ = - \frac{\text{ log} \left( 1 - x \right)}{x} + \text{ log }\left| \left( x - 1 \right) \right| - \log x + C\]
\[ = - \frac{\text{ log} \left| 1 - x \right|}{x} + \text{ log }\left| 1 - x \right| - \text{ log }\left| x \right| + C\]
\[ = \left( 1 - \frac{1}{x} \right) \text{ log} \left| 1 - x \right| - \text{ log} \left| x \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 99 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int \cot^5 x  \text{ dx }\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int x^2 \text{ cos x dx }\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int \sin^5 x\ dx\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×