Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I } = \int e^x \left[ \frac{x - 1}{\left( x - 1 \right)^3} \right]dx\]
\[ = \int e^x \left[ \frac{x + 1 - 2}{\left( x + 1 \right)^3} \right]dx\]
\[ = \int e^x \left[ \frac{1}{\left( x - 1 \right)^2} - \frac{2}{\left( x + 1 \right)^3} \right]dx\]
\[\text{ Here}, f(x) = \frac{1}{\left( x + 1 \right)^2}\]
\[ \Rightarrow f'(x) = \frac{- 2}{\left( x + 1 \right)^2}\]
\[\text{ Put e}^x f(x) = t\]
\[\text{ let e}^x \frac{1}{\left( x + 1 \right)^2} = t\]
\[\text{ Diff both sides }\]
\[ e^x \frac{1}{\left( x + 1 \right)^2} + e^x \frac{\left( - 2 \right)}{\left( x + 1 \right)^3} = \frac{dt}{dx}\]
\[ \Rightarrow e^x \left[ \frac{1}{\left( x + 1 \right)^2} - \frac{2}{\left( x + 1 \right)^3} \right]dx = dt\]
\[ \therefore \int e^x \left[ \frac{1}{\left( x + 1 \right)^2} - \frac{2}{\left( x + 1 \right)^3} \right]dx = \int dt\]
\[ = t + C\]
\[ = \frac{e^x}{\left( x + 1 \right)^2} + C\]
APPEARS IN
संबंधित प्रश्न
`∫ cos ^4 2x dx `
` ∫ tan^5 x dx `
\[\int\left( e^\text{log x} + \sin x \right) \text{ cos x dx }\]
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]
If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then