हिंदी

∫ E X X − 1 ( X + 1 ) 3 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]
योग

उत्तर

\[\text{ Let I } = \int e^x \left[ \frac{x - 1}{\left( x - 1 \right)^3} \right]dx\]

\[ = \int e^x \left[ \frac{x + 1 - 2}{\left( x + 1 \right)^3} \right]dx\]

\[ = \int e^x \left[ \frac{1}{\left( x - 1 \right)^2} - \frac{2}{\left( x + 1 \right)^3} \right]dx\]

\[\text{ Here}, f(x) = \frac{1}{\left( x + 1 \right)^2}\]

\[ \Rightarrow f'(x) = \frac{- 2}{\left( x + 1 \right)^2}\]

\[\text{ Put e}^x f(x) = t\]

\[\text{  let e}^x \frac{1}{\left( x + 1 \right)^2} = t\]

\[\text{ Diff  both  sides }\]

\[ e^x \frac{1}{\left( x + 1 \right)^2} + e^x \frac{\left( - 2 \right)}{\left( x + 1 \right)^3} = \frac{dt}{dx}\]

\[ \Rightarrow e^x \left[ \frac{1}{\left( x + 1 \right)^2} - \frac{2}{\left( x + 1 \right)^3} \right]dx = dt\]

\[ \therefore \int e^x \left[ \frac{1}{\left( x + 1 \right)^2} - \frac{2}{\left( x + 1 \right)^3} \right]dx = \int dt\]

\[ = t + C\]

\[ = \frac{e^x}{\left( x + 1 \right)^2} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.26 [पृष्ठ १४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.26 | Q 10 | पृष्ठ १४३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

`∫     cos ^4  2x   dx `


` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

` ∫      tan^5    x   dx `


\[\int \cot^5 x  \text{ dx }\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int x^3 \text{ log x dx }\]

\[\int {cosec}^3 x\ dx\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×