Advertisements
Advertisements
प्रश्न
\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]
योग
उत्तर
\[\int\frac{\sin 2x}{\sin 5x \sin 3x}dx\]
\[ = \int\frac{\sin \left( 5x - 3x \right)}{\sin 5x \sin 3x}dx\]
\[ = \int\frac{\sin 5x \cos 3x - \cos 5x \sin 3x}{\sin 5x \sin 3x}dx\]
\[ = \int \frac{\sin 5x \cos 3x}{\sin 5x \sin 3x} - \frac{\cos 5x \sin 3x}{\sin 5x \sin 3x}dx\]
\[ = \int\left[ \cot 3x - \cot 5x \right] dx\]
\[ = ∫ cot\ 3x\ dx - \int\cot\ 5x\ dx\]
\[ = \frac{1}{3} \text{ln} \left| \sin 3x \right| - \frac{1}{5} \text{ln }\left| \sin 5x \right| + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]
\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]
\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]
\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]
\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]
Evaluate the following integrals:
\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]
\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]
\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]
` ∫ { x^2 dx}/{x^6 - a^6} dx `
\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]
\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
`int 1/(sin x - sqrt3 cos x) dx`
\[\int\frac{1}{1 - \cot x} dx\]
\[\int x^3 \text{ log x dx }\]
\[\int x^2 \text{ cos x dx }\]
\[\int x^3 \cos x^2 dx\]
\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]
\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]
\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]
\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]
\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]
\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]
\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]
If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]
\[\int\frac{1}{1 - \cos x - \sin x} dx =\]
\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]
\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\]
\[\int \sec^2 x \cos^2 2x \text{ dx }\]
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int \cot^4 x\ dx\]
\[\int \sin^3 x \cos^4 x\ \text{ dx }\]
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]
\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]
\[\int \sin^{- 1} \sqrt{x}\ dx\]
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]