हिंदी

∫ X 4 ( X − 1 ) ( X 2 + 1 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]
योग

उत्तर

We have,
\[I = \int \frac{x^4 dx}{\left( x - 1 \right) \left( x^2 + 1 \right)}\]
\[ = \int \left[ \frac{x^4 - 1 + 1}{\left( x - 1 \right) \left( x^2 + 1 \right)} \right]dx\]
\[ = \int \frac{\left( x^4 - 1 \right)dx}{\left( x - 1 \right) \left( x^2 + 1 \right)} + \int\frac{dx}{\left( x - 1 \right) \left( x^2 + 1 \right)}\]
\[ = \int\frac{\left( x^2 - 1 \right) \left( x^2 + 1 \right) dx}{\left( x - 1 \right) \left( x^2 + 1 \right)} + \int\frac{dx}{\left( x - 1 \right) \left( x^2 + 1 \right)}\]
\[ = \int \frac{\left( x - 1 \right) \left( x + 1 \right)dx}{\left( x - 1 \right)} + \int\frac{dx}{\left( x - 1 \right) \left( x^2 + 1 \right)}\]
\[ = \int\left( x + 1 \right)dx + \int\frac{dx}{\left( x - 1 \right) \left( x^2 + 1 \right)} ................\left( 1 \right)\]
\[\text{Let }\frac{1}{\left( x - 1 \right) \left( x^2 + 1 \right)} = \frac{A}{x - 1} + \frac{Bx + C}{x^2 + 1}\]
\[ \Rightarrow \frac{1}{\left( x - 1 \right) \left( x^2 + 1 \right)} = \frac{A\left( x^2 + 1 \right) + \left( Bx + C \right) \left( x - 1 \right)}{\left( x - 1 \right) \left( x^2 + 1 \right)}\]
\[ \Rightarrow 1 = A x^2 + A + B x^2 - Bx + Cx - C\]
\[ \Rightarrow 1 = \left( A + B \right) x^2 + \left( C - B \right)x + A - C\]
\[\text{Equating coefficients of like terms}\]
\[A + B = 0 . . . . . \left( 1 \right)\]
\[C - B = 0 . . . . . \left( 2 \right)\]
\[A - C = 1 . . . . . \left( 3 \right)\]
\[\text{Solving (1), (2) and (3), we get}\]
\[B = - \frac{1}{2}, A = \frac{1}{2}, C = - \frac{1}{2}\]
\[ \therefore \frac{1}{\left( x - 1 \right) \left( x^2 + 1 \right)} = \frac{1}{2\left( x - 1 \right)} + \frac{- \frac{x}{2} - \frac{1}{2}}{x^2 + 1}\]
\[ \Rightarrow \frac{1}{\left( x - 1 \right) \left( x^2 + 1 \right)} = \frac{1}{2\left( x - 1 \right)} - \frac{1}{2}\left( \frac{x}{x^2 + 1} \right) - \frac{1}{2\left( x^2 + 1 \right)} ............. \left( 2 \right)\]
\[\text{From (1) and (2)}\]
\[I = \int\left( x + 1 \right)dx + \frac{1}{2}\int\frac{dx}{x - 1} - \frac{1}{2}\int\frac{x dx}{x^2 + 1} - \frac{1}{2}\int\frac{dx}{x^2 + 1}\]
\[\text{Putting }x^2 + 1 = t\]
\[ \Rightarrow 2x dx = dt\]
\[ \Rightarrow x dx = \frac{dt}{2}\]
\[ \therefore I = \int\left( x + 1 \right)dx + \frac{1}{2}\int\frac{dx}{x - 1} - \frac{1}{4}\int\frac{dt}{t} - \frac{1}{2}\int\frac{dx}{x^2 + 1}\]
\[ = \frac{x^2}{2} + x + \frac{1}{2}\log \left| x - 1 \right| - \frac{1}{4}\log \left| t \right| - \frac{1}{2} \tan^{- 1} x + C\]
\[ = \frac{x^2}{2} + x + \frac{1}{2}\log \left| x - 1 \right| - \frac{1}{4}\log \left| x^2 + 1 \right| - \frac{1}{2} \tan^{- 1} \left( x \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 65 | पृष्ठ १७८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int x \sin x \cos 2x\ dx\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int x \sin^3 x\ dx\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int \tan^4 x\ dx\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×