हिंदी

∫ X 3 Tan − 1 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int x^3 \tan^{- 1}\text{  x dx }\]
योग

उत्तर

\[\int {x^3}_{II} . \tan^{- 1}_I \text{ x dx }\]
\[ = \tan^{- 1} x \int x^3 dx - \int\left\{ \frac{d}{dx}\left( \tan^{- 1} x \right)\int x^3 dx \right\}dx\]
\[ = \tan^{- 1} x . \frac{x^4}{4} - \int\frac{1}{1 + x^2} \times \frac{x^4}{4}dx\]
\[ = \tan^{- 1} x . \frac{x^4}{4} - \frac{1}{4}\int \frac{x^4 dx}{x^2 + 1}\]
\[ = \tan^{- 1} x . \frac{x^4}{4} - \frac{1}{4}\int \left( \frac{x^4 - 1 + 1}{x^2 + 1} \right)dx\]
\[ = \tan^{- 1} x . \frac{x^4}{4} - \frac{1}{4}\int \left( \frac{x^4 - 1}{x^2 + 1} \right)dx - \frac{1}{4}\int \frac{1}{x^2 + 1}dx\]
\[ = \tan^{- 1} x . \frac{x^4}{4} - \frac{1}{4}\int\frac{\left( x^2 - 1 \right) \left( x^2 + 1 \right)}{\left( x^2 + 1 \right)}dx - \frac{1}{4}\int \frac{1}{x^2 + 1}dx\]
\[ = \tan^{- 1} x . \frac{x^4}{4} - \frac{1}{4}\int \left( x^2 - 1 \right)dx - \frac{1}{4} \tan^{- 1} x + C\]
\[ = \tan^{- 1} x . \frac{x^4}{4} - \frac{1}{4}\left( \frac{x^3}{3} - x \right) - \frac{1}{4} \tan^{- 1} x + C\]
\[ = \left( \frac{x^4 - 1}{4} \right) \tan^{- 1} x - \frac{1}{12}\left( x^3 - 3x \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.25 | Q 49 | पृष्ठ १३४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int \left( 3x + 4 \right)^2 dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int \sin^2 \frac{x}{2} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int \sin^5 x \text{ dx }\]

\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int x^3 \text{ log x dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int \cot^4 x\ dx\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×