English

∫ X 3 Tan − 1 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int x^3 \tan^{- 1}\text{  x dx }\]
Sum

Solution

\[\int {x^3}_{II} . \tan^{- 1}_I \text{ x dx }\]
\[ = \tan^{- 1} x \int x^3 dx - \int\left\{ \frac{d}{dx}\left( \tan^{- 1} x \right)\int x^3 dx \right\}dx\]
\[ = \tan^{- 1} x . \frac{x^4}{4} - \int\frac{1}{1 + x^2} \times \frac{x^4}{4}dx\]
\[ = \tan^{- 1} x . \frac{x^4}{4} - \frac{1}{4}\int \frac{x^4 dx}{x^2 + 1}\]
\[ = \tan^{- 1} x . \frac{x^4}{4} - \frac{1}{4}\int \left( \frac{x^4 - 1 + 1}{x^2 + 1} \right)dx\]
\[ = \tan^{- 1} x . \frac{x^4}{4} - \frac{1}{4}\int \left( \frac{x^4 - 1}{x^2 + 1} \right)dx - \frac{1}{4}\int \frac{1}{x^2 + 1}dx\]
\[ = \tan^{- 1} x . \frac{x^4}{4} - \frac{1}{4}\int\frac{\left( x^2 - 1 \right) \left( x^2 + 1 \right)}{\left( x^2 + 1 \right)}dx - \frac{1}{4}\int \frac{1}{x^2 + 1}dx\]
\[ = \tan^{- 1} x . \frac{x^4}{4} - \frac{1}{4}\int \left( x^2 - 1 \right)dx - \frac{1}{4} \tan^{- 1} x + C\]
\[ = \tan^{- 1} x . \frac{x^4}{4} - \frac{1}{4}\left( \frac{x^3}{3} - x \right) - \frac{1}{4} \tan^{- 1} x + C\]
\[ = \left( \frac{x^4 - 1}{4} \right) \tan^{- 1} x - \frac{1}{12}\left( x^3 - 3x \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.25 [Page 134]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.25 | Q 49 | Page 134

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int x^3 \text{ log x dx }\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int \tan^4 x\ dx\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×