dx ∫14sin2x+4sinxcosx+5cos2x dx
Dividing numerator and denominator by cos2x we get
I=∫sec2x4tan2x+4tanx+5dx
Putting tan x = t Putting tan x = t
sec x dx = dt ⇒ sec2 x dx = dt
∴I=∫dt4t2+4t+5
=14∫dtt2+t+54
=14∫dtt2+t+14−14+54
=14∫dt(t+12)2+12
=14×tan−1(t+12)+C..........[∵∫1x2+a2dx=1atan−1xa+C]
=14tan−1(2t+12)+C
=14tan−1(2tanx+12)+C...........[∵t=tanx]
=14tan−1(tanx+12)+C
∫ 11+cos 3x dx
cosec ∫ sec x cosec xlog (tanx) dx
=∫1sin3xcos2xdx
dx ∫x+2(x+1)3 dx
Find : ∫ex(2+ex)(4+e2x)dx.