English

∫ Sin − 1 √ X a + X Dx - Mathematics

Advertisements
Advertisements

Question

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]
Sum

Solution

\[\text{We have}, \]

\[I = \int \sin^{- 1} \sqrt{\frac{x}{a + x}} dx\]

\[\text{ Putting x }= a \tan^2 \theta \Rightarrow \tan \theta = \sqrt{\frac{x}{a}}\]

\[ \Rightarrow dx = a\left( 2 \tan \theta \right) \sec^2 \ \text{  θ  dθ}\]

\[ \therefore I = \int \sin^{- 1} \sqrt{\frac{a \tan^2 \theta}{a + a \tan^2 \theta}} \left( 2a \tan \theta \sec^2 \theta \right)d\theta\]

\[ = \int \sin^{- 1} \sqrt{\frac{\tan^2 \theta}{\sec^2 \theta}} \left( 2a \tan \theta \sec^2 \theta \right) d\theta\]

\[ = 2a \int \sin^{- 1} \left( \sin \theta \right) \tan \theta \sec^2 \text{  θ  dθ}\]

\[ = 2a \int \theta \tan \theta \sec^2 \text{  θ  dθ}\]

\[\text{Considering  θ as first function and  tan   θ  sec}^2 \text{  θ  as second function}\]

\[I = 2a \left[ \theta\frac{\tan^2 \theta}{2} - \int1\frac{\tan^2 \theta}{2}d\theta \right]\]

\[ = a\left[ \theta \tan^2 \theta - \int\left( \sec^2 \theta - 1 \right)d\theta \right]\]

\[ = a\left[ \theta \tan^2 \theta - \tan \theta + \theta \right] + C\]

\[ = a\left[ \theta \times \left( 1 + \tan^2 \theta \right) - \tan \theta \right] + C\]

\[ = a\left[ \tan^{- 1} \left( \frac{\sqrt{x}}{\sqrt{a}} \right) \left( 1 + \frac{x}{a} \right) - \frac{\sqrt{x}}{\sqrt{a}} \right] + C\]

\[ = \left( x + a \right) \tan^{- 1} \left( \frac{\sqrt{x}}{\sqrt{a}} \right) - \sqrt{ax} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 205]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 113 | Page 205

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

` ∫  sec^6   x  tan    x   dx `

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int x \sin^3 x\ dx\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int \cot^4 x\ dx\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×