Advertisements
Advertisements
Question
Solution
\[\text{We have}, \]
\[I = \int \sin^{- 1} \sqrt{\frac{x}{a + x}} dx\]
\[\text{ Putting x }= a \tan^2 \theta \Rightarrow \tan \theta = \sqrt{\frac{x}{a}}\]
\[ \Rightarrow dx = a\left( 2 \tan \theta \right) \sec^2 \ \text{ θ dθ}\]
\[ \therefore I = \int \sin^{- 1} \sqrt{\frac{a \tan^2 \theta}{a + a \tan^2 \theta}} \left( 2a \tan \theta \sec^2 \theta \right)d\theta\]
\[ = \int \sin^{- 1} \sqrt{\frac{\tan^2 \theta}{\sec^2 \theta}} \left( 2a \tan \theta \sec^2 \theta \right) d\theta\]
\[ = 2a \int \sin^{- 1} \left( \sin \theta \right) \tan \theta \sec^2 \text{ θ dθ}\]
\[ = 2a \int \theta \tan \theta \sec^2 \text{ θ dθ}\]
\[\text{Considering θ as first function and tan θ sec}^2 \text{ θ as second function}\]
\[I = 2a \left[ \theta\frac{\tan^2 \theta}{2} - \int1\frac{\tan^2 \theta}{2}d\theta \right]\]
\[ = a\left[ \theta \tan^2 \theta - \int\left( \sec^2 \theta - 1 \right)d\theta \right]\]
\[ = a\left[ \theta \tan^2 \theta - \tan \theta + \theta \right] + C\]
\[ = a\left[ \theta \times \left( 1 + \tan^2 \theta \right) - \tan \theta \right] + C\]
\[ = a\left[ \tan^{- 1} \left( \frac{\sqrt{x}}{\sqrt{a}} \right) \left( 1 + \frac{x}{a} \right) - \frac{\sqrt{x}}{\sqrt{a}} \right] + C\]
\[ = \left( x + a \right) \tan^{- 1} \left( \frac{\sqrt{x}}{\sqrt{a}} \right) - \sqrt{ax} + C\]
APPEARS IN
RELATED QUESTIONS
\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]
Integrate the following integrals:
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then