Advertisements
Advertisements
Question
\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]
Sum
Solution
\[\text{Let I }= \int \left[ \frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} \right]dx\]
Putting x + 1 = t
⇒ x = t – 1
& dx = dt
\[\therefore I = \int\left[ \frac{\left( t - 1 \right)^2 + 3 \left( t - 1 \right) - 1}{t^2} \right]dt\]
\[ = \int \left( \frac{t^2 - 2t + 1 + 3t - 3 - 1}{t^2} \right)dt\]
\[ = \int\left( \frac{t^2 + t - 3}{t^2} \right)dt\]
\[ = \int\left( 1 + \frac{1}{t} - 3 t^{- 2} \right)dt\]
\[ = t + \text{log} \left| t \right| - 3\left( \frac{t^{- 2 + 1}}{- 2 + 1} \right) + C\]
\[ = t + \text{log}\left| t \right| + \frac{3}{t} + C\]
\[ = x + 1 + \text{log} \left| x + 1 \right| + \frac{3}{x + 1} + C \left[ \because t = x + 1 \right]\]
Let C + 1 = C′
\[= x + \text{log} \left( x + 1 \right) + \frac{3}{x + 1} + C\prime\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]
\[\int\sqrt{x}\left( 3 - 5x \right) dx\]
\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]
` ∫ {cosec x} / {"cosec x "- cot x} ` dx
\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]
\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]
\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]
\[\int \cos^2 \text{nx dx}\]
\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\]
\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]
\[\int x^3 \cos x^4 dx\]
\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]
\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]
\[\int \cot^5 x \text{ dx }\]
\[\int\frac{x^2 - 1}{x^2 + 4} dx\]
\[\int\frac{x^4 + 1}{x^2 + 1} dx\]
\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]
\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]
\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]
\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]
\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]
\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]
`int 1/(sin x - sqrt3 cos x) dx`
\[\int x^2 \text{ cos x dx }\]
\[\int x^3 \cos x^2 dx\]
` ∫ x tan ^2 x dx
\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]
\[\int\left( x + 1 \right) \text{ log x dx }\]
\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]
\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]
\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]
\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]
\[\int\frac{x^3}{x + 1}dx\] is equal to
\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]
\[\int \log_{10} x\ dx\]
\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]
\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx}\]
\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]