Advertisements
Advertisements
Question
\[\int \log_{10} x\ dx\]
Sum
Solution
\[\int \log_{10} x\ dx\]
\[ = \int\frac{\log_e x}{\log_e 10} dx\]
\[ = \frac{1}{\log_e 10}\int 1_{II} \cdot \log_I x \text{ dx}\]
\[ = \frac{1}{\log_e 10}\left[ \log_e x\int1 \text{ dx} - \int\left\{ \frac{d}{dx}\left( \log_e x \right)\int1 \text{ dx} \right\}\text{ dx}\right]\]
\[ = \frac{1}{\log_e 10}\left[ \log_e x \cdot x - \int\frac{1}{x} \times x \text{ dx} \right]\]
\[ = \frac{1}{\log_e 10}\left[ x \log_e x - x \right] + C\]
\[ = \frac{1}{\log_e 10} \times x \left( \log_e x - 1 \right) + C\]
\[ = x \left( \log_e x - 1 \right) \cdot \log_{10} e + C\]
\[ = \int\frac{\log_e x}{\log_e 10} dx\]
\[ = \frac{1}{\log_e 10}\int 1_{II} \cdot \log_I x \text{ dx}\]
\[ = \frac{1}{\log_e 10}\left[ \log_e x\int1 \text{ dx} - \int\left\{ \frac{d}{dx}\left( \log_e x \right)\int1 \text{ dx} \right\}\text{ dx}\right]\]
\[ = \frac{1}{\log_e 10}\left[ \log_e x \cdot x - \int\frac{1}{x} \times x \text{ dx} \right]\]
\[ = \frac{1}{\log_e 10}\left[ x \log_e x - x \right] + C\]
\[ = \frac{1}{\log_e 10} \times x \left( \log_e x - 1 \right) + C\]
\[ = x \left( \log_e x - 1 \right) \cdot \log_{10} e + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]
`∫ cos ^4 2x dx `
\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]
\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]
\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]
\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]
\[\int x^2 \sqrt{x + 2} \text{ dx }\]
` ∫ 1 /{x^{1/3} ( x^{1/3} -1)} ` dx
` ∫ tan^3 x sec^2 x dx `
` ∫ tan^5 x dx `
\[\int \cos^5 x \text{ dx }\]
\[\int \sin^5 x \cos x \text{ dx }\]
` = ∫1/{sin^3 x cos^ 2x} dx`
\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{ dx}\]
\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]
\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx }\]
\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2} \text{ dx }\]
\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]
\[\int x \sin x \cos 2x\ dx\]
\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]
\[\int x\sqrt{x^4 + 1} \text{ dx}\]
\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]
\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]
\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]
\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]
\[\int\frac{1}{1 - \cos x - \sin x} dx =\]
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]
\[\int\sin x \sin 2x \text{ sin 3x dx }\]
\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]
\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]
\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]