English

∫ X √ X 4 + 1 D X - Mathematics

Advertisements
Advertisements

Question

\[\int x\sqrt{x^4 + 1} \text{ dx}\]
Sum

Solution

\[\text{ Let I } = \int x\sqrt{x^4 + 1}\text{ dx}\]
\[ = \int x\sqrt{\left( x^2 \right)^2 + 1}\text{ dx}\]
\[\text{ Putting}\ x^2 = t\]
\[ \Rightarrow  \text{        2 x dx}=\text{  dt }\]
\[ \Rightarrow x \text{ dx}= \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int\sqrt{t^2 + 1}\text{ dt }\]
\[ = \frac{1}{2}\int\sqrt{t^2 + 1^2}\text{ dt}\]
\[ = \frac{1}{2} \left[ \frac{t}{2}\sqrt{t^2 + 1} + \frac{1^2}{2} \text{ log }\left| t + \sqrt{t^2 + 1} \right| \right] + C\]
\[ = \frac{1}{2}\left[ \frac{x^2}{2} \sqrt{x^4 + 1} + \frac{1}{2} \text{ log }\left| x^2 + \sqrt{x^4 + 1} \right| \right] + C\]
\[ = \frac{x^2}{4} \sqrt{x^4 + 1} + \frac{1}{4} \text{ log} \left| x^2 + \sqrt{x^4 + 1} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.28 [Page 154]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.28 | Q 12 | Page 154

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int x e^x \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int x^2 \sin^2 x\ dx\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int \sin^5 x\ dx\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×