Advertisements
Advertisements
Question
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
Solution
\[\int\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right)dx = 3 \frac{x^\frac{1}{2} + 1}{\frac{1}{2} + 1} + \frac{x^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} + c\]
\[ = 2 x^\frac{3}{2} + 2 x^\frac{1}{2} + c\]
\[ = 2\left( x^\frac{3}{2} + x^\frac{1}{2} \right) + c\]
\[\text{ Hence , the anti - derivative of }\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) \text{ is 2}\left( x^\frac{3}{2} + x^\frac{1}{2} \right) + c .\]
APPEARS IN
RELATED QUESTIONS
If f' (x) = 8x3 − 2x, f(2) = 8, find f(x)
\[\int \tan^2 \left( 2x - 3 \right) dx\]
` ∫ sin x \sqrt (1-cos 2x) dx `
\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]
\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]