English

Write the Anti-derivative of ( 3 √ X + 1 √ X ) . - Mathematics

Advertisements
Advertisements

Question

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]

Sum

Solution

\[\int\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right)dx = 3 \frac{x^\frac{1}{2} + 1}{\frac{1}{2} + 1} + \frac{x^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} + c\]
\[ = 2 x^\frac{3}{2} + 2 x^\frac{1}{2} + c\]
\[ = 2\left( x^\frac{3}{2} + x^\frac{1}{2} \right) + c\]
\[\text{ Hence , the anti - derivative of  }\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) \text{ is 2}\left( x^\frac{3}{2} + x^\frac{1}{2} \right) + c .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Very Short Answers [Page 198]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Very Short Answers | Q 59 | Page 198

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int \sin^4 2x\ dx\]

\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int \tan^3 x\ dx\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×