English

∫ 1 Sin 4 X + Cos 4 X Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]

Sum

Solution

\[\text{We have}, \]
\[I = \int\frac{dx}{\sin^4 x + \cos^4 x}\]

Dividing numerator and denominator by cos4x

\[I = \int\frac{\sec^4 \text{ x dx}}{\tan^4 x + 1}\]

\[ = \int\frac{\sec^2 x \sec^2 \text{ x dx}}{\tan^4 x + 1}\]

\[ = \int\frac{\left( 1 + \tan^2 x \right) \sec^2 \text{ x dx}}{\tan^4 x + 1}\]

\[\text{ Putting tan x = t}\]

\[ \Rightarrow \sec^2 \text{ x dx = dt}\]

\[ \therefore I = \int\frac{\left( 1 + t^2 \right) dt}{t^4 + 1}\]

\[ = \int\frac{\left( \frac{1}{t^2} + 1 \right) dt}{t^2 + \frac{1}{t^2}}\]

\[ = \int\frac{\left( 1 + \frac{1}{t^2} \right)}{\left( t - \frac{1}{t} \right)^2 + 2}dt\]

\[\text{ Putting t  }- \frac{1}{t} = p\]

\[ \Rightarrow \left( 1 + \frac{1}{t^2} \right)dt = dp\]

\[ \therefore I = \int\frac{1}{p^2 + \left( \sqrt{2} \right)^2}dp\]

\[ = \frac{1}{\sqrt{2}} \text{ tan}^{- 1} \left( \frac{p}{\sqrt{2}} \right) + C\]

\[ = \frac{1}{\sqrt{2}} \text{ tan}^{- 1} \left( \frac{t - \frac{1}{t}}{\sqrt{2}} \right) + C\]

\[ = \frac{1}{\sqrt{2}} \text{ tan}^{- 1} \left( \frac{t^2 - 1}{\sqrt{2} \text{ t }} \right) + C\]

\[ = \frac{1}{\sqrt{2}} \text{ tan}^{- 1} \left( \frac{\tan^2 x - 1}{\sqrt{2} \tan x} \right) + C\]

\[ = \frac{1}{\sqrt{2}} \text{ tan}^{- 1} \left( - \sqrt{2} \times \frac{1 - \tan^2 x}{2 \tan x} \right) + C\]

\[ = \frac{1}{\sqrt{2}} \text{ tan}^{- 1} \left( \frac{- \sqrt{2}}{\tan 2x} \right) + C\]

\[ = \frac{1}{\sqrt{2}} \text{ tan}^{- 1} \left( - \sqrt{2} \cot 2x \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 68 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int x^3 \cos x^4 dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

` ∫  sec^6   x  tan    x   dx `

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int \tan^5 x\ dx\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×