Advertisements
Advertisements
Question
Solution
\[\text{ Let, }I = \int \sin^3 \sqrt{x} dx . . . . . \left( 1 \right)\]
\[\text{ Consider,} \sqrt{x} = t . . . . . \left( 2 \right)\]
\[\text{Differentiating both sides we get}, \]
\[\frac{1}{2\sqrt{x}}dx = dt\]
\[ \Rightarrow dx = 2\sqrt{x} \text{ dt }\]
\[ \Rightarrow dx = \text{ 2t dt }\]
\[\text{ Therefore,} \left( 1 \right) \text{ becomes,} \]
\[I = \int \sin^3 t \text{ 2t dt }\]
\[ = 2\int t \sin^3 \text{ t dt }\]
\[ = 2\int t \left( \frac{3\sin t - \sin 3t}{4} \right) dt \left( \text{ Since, }\sin 3A = 3\sin A - 4 \sin^3 A \right)\]
\[ = \frac{3}{2}\int \text{ t sin t dt } - \frac{1}{2}\int t \text{ sin 3t dt }\]
\[ = \frac{3}{2}\left[ t\int\text{ sin t dt }- \int\left( \frac{d t}{d t}\int\text{ sin t dt } \right)dt \right] - \frac{1}{2}\left[ t\int \text{ sin 3t dt }- \int\left( \frac{d t}{d t}\int\text{ sin 3t dt } \right)dt \right]\]
\[ = \frac{3}{2}\left[ - \text{ t cos t } + \int\text{ cos t dt }\right] - \frac{1}{2}\left[ - \frac{t \cos 3t}{3} + \frac{1}{3}\int\text{ cos 3t dt }\right]\]
\[ = \frac{3}{2}\left[ - t \cos t + \sin t \right] - \frac{1}{2}\left[ - \frac{t \cos3t}{3} + \frac{1}{9}\text{ sin 3t }\right] + C\]
\[ = - \frac{3}{2}t \cos t + \frac{3}{2}\sin t + \frac{1}{6}t \text{ cos 3t} - \frac{1}{18}\text{ sin 3t} + C\]
\[ = - \frac{3}{2}\sqrt{x}\cos\sqrt{x} + \frac{3}{2}\sin\sqrt{x} + \frac{1}{6}\sqrt{x}\cos\left( 3\sqrt{x} \right) - \frac{1}{18}\sin\left( 3\sqrt{x} \right) + C\]
APPEARS IN
RELATED QUESTIONS
` ∫ 1/ {1+ cos 3x} ` dx
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`