English

∫ Sin 3 √ X D X - Mathematics

Advertisements
Advertisements

Question

\[\int \sin^3 \sqrt{x}\ dx\]
Sum

Solution

\[\text{ Let, }I = \int \sin^3 \sqrt{x} dx . . . . . \left( 1 \right)\]
\[\text{ Consider,} \sqrt{x} = t . . . . . \left( 2 \right)\]
\[\text{Differentiating both sides we get}, \]
\[\frac{1}{2\sqrt{x}}dx = dt\]
\[ \Rightarrow dx = 2\sqrt{x} \text{ dt }\]
\[ \Rightarrow dx = \text{ 2t dt }\]
\[\text{ Therefore,} \left( 1 \right) \text{ becomes,} \]
\[I = \int \sin^3 t \text{ 2t dt }\]
\[ = 2\int t \sin^3 \text{ t dt }\]
\[ = 2\int t \left( \frac{3\sin t - \sin 3t}{4} \right) dt \left( \text{ Since, }\sin 3A = 3\sin A - 4 \sin^3 A \right)\]
\[ = \frac{3}{2}\int \text{ t sin  t dt } - \frac{1}{2}\int t \text{ sin 3t dt }\]
\[ = \frac{3}{2}\left[ t\int\text{ sin t   dt }- \int\left( \frac{d t}{d t}\int\text{ sin t dt } \right)dt \right] - \frac{1}{2}\left[ t\int \text{ sin  3t  dt }- \int\left( \frac{d t}{d t}\int\text{ sin  3t  dt } \right)dt \right]\]
\[ = \frac{3}{2}\left[ - \text{ t cos t } + \int\text{ cos t   dt }\right] - \frac{1}{2}\left[ - \frac{t \cos  3t}{3} + \frac{1}{3}\int\text{ cos 3t dt }\right]\]
\[ = \frac{3}{2}\left[ - t \cos t + \sin t \right] - \frac{1}{2}\left[ - \frac{t \cos3t}{3} + \frac{1}{9}\text{ sin 3t }\right] + C\]
\[ = - \frac{3}{2}t \cos t + \frac{3}{2}\sin t + \frac{1}{6}t \text{ cos 3t} - \frac{1}{18}\text{ sin 3t} + C\]
\[ = - \frac{3}{2}\sqrt{x}\cos\sqrt{x} + \frac{3}{2}\sin\sqrt{x} + \frac{1}{6}\sqrt{x}\cos\left( 3\sqrt{x} \right) - \frac{1}{18}\sin\left( 3\sqrt{x} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.25 [Page 134]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.25 | Q 53 | Page 134

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

` ∫  tan^5 x   sec ^4 x   dx `

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int x \cos^3 x\ dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×