Advertisements
Advertisements
Question
Solution
\[\int \left( \log x \right)_{}^2 {x \cdot} dx\]
` "Taking log x"^2" as the first function and x as the second function ". `
\[ = \left( \log x \right)^2 \int xdx - \int\left\{ \frac{d}{dx} \left( \log x \right)^2 \int x\ dx \right\}dx\]
\[ = \left( \log x \right)^2 \cdot \frac{x^2}{2} - \int\frac{\left( 2 \log x \right)}{x} \times \frac{x^2}{2} dx\]
\[ = \left( \log x \right)^2 \times \frac{x^2}{2} - \int x_{II} \log x_I dx\]
\[ = \left( \log x \right)^2 \times \frac{x^2}{2} - \left[ \log x \int x\ dx - \int\left\{ \frac{d}{dx}\left( \log x \right)\int x\ dx \right\}dx \right]\]
\[ = \left( \log x \right)^2 \times \frac{x^2}{2} - \left[ \log x \cdot \frac{x^2}{2} - \int\frac{1}{x} \times \frac{x^2}{2}dx \right]\]
\[ = \left( \log x \right)^2 \times \frac{x^2}{2} - \log x \cdot \frac{x^2}{2} + \frac{x^2}{4} + C\]
\[ = \frac{x^2}{2}\left[ \left( \log x \right)^2 - \log x + \frac{1}{2} \right] + C\]
APPEARS IN
RELATED QUESTIONS
\[\int\left\{ x^2 + e^{\log x}+ \left( \frac{e}{2} \right)^x \right\} dx\]
` ∫ {cosec x} / {"cosec x "- cot x} ` dx
Integrate the following integrals:
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
\[\int\left( e^\text{log x} + \sin x \right) \text{ cos x dx }\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]