Advertisements
Advertisements
Question
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
Sum
Solution
\[\text{ Let I } = \int\frac{1}{5 - 4 \sin x}dx\]
\[\text{ Putting sin x} = \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]
\[ \therefore I = \int\frac{1}{5 - 4 \times \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}}dx\]
\[ = \int\frac{\left( 1 + \tan^2 \frac{x}{2} \right)}{5 \left( 1 + \tan^2 \frac{x}{2} \right) - 8 \tan \frac{x}{2}}dx\]
\[ = \int\frac{\sec^2 \frac{x}{2}}{5 \tan^2 \frac{x}{2} - 8 \tan \frac{x}{2} + 5}dx\]
\[\text{ Putting tan }\frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2} \text{ sec}^2 \left( \frac{x}{2} \right) dx = dt\]
\[\Rightarrow \text{ sec}^2 \left( \frac{x}{2} \right) dx = \text{ 2 dt}\]
\[ \therefore I = 2\int\frac{1}{5 t^2 - 8t + 5}dt\]
\[ = \frac{2}{5}\int\frac{1}{t^2 - \frac{8}{5}t + 1}dt\]
\[ = \frac{2}{5}\int\frac{1}{t^2 - \frac{8t}{5} + \left( \frac{4}{5} \right)^2 - \left( \frac{4}{5} \right)^2 + 1}dt\]
\[ = \frac{2}{5}\int\frac{1}{\left( t - \frac{4}{5} \right)^2 - \frac{16}{25} + 1}dt\]
\[ = \frac{2}{5}\int\frac{1}{\left( t - \frac{4}{5} \right)^2 + \left( \frac{3}{5} \right)^2}dt\]
\[ = \frac{2}{5} \times \frac{5}{3} \text{ tan}^{- 1} \left( \frac{t - \frac{4}{5}}{\frac{3}{5}} \right) + C .................\left[ \because \int\frac{1}{x^2 + a^2}dx = \frac{1}{a} \text{ tan}^{- 1} \frac{x}{a} + C \right]\]
\[ = \frac{2}{3} \text{ tan}^{- 1} \left( \frac{5t - 4}{3} \right) + C\]
\[ = \frac{2}{3} \text{ tan}^{- 1} \left( \frac{5 \tan \frac{x}{2} - 4}{3} \right) + C ......\left[ \because t = \tan \frac{x}{2} \right]\]
\[ \therefore I = 2\int\frac{1}{5 t^2 - 8t + 5}dt\]
\[ = \frac{2}{5}\int\frac{1}{t^2 - \frac{8}{5}t + 1}dt\]
\[ = \frac{2}{5}\int\frac{1}{t^2 - \frac{8t}{5} + \left( \frac{4}{5} \right)^2 - \left( \frac{4}{5} \right)^2 + 1}dt\]
\[ = \frac{2}{5}\int\frac{1}{\left( t - \frac{4}{5} \right)^2 - \frac{16}{25} + 1}dt\]
\[ = \frac{2}{5}\int\frac{1}{\left( t - \frac{4}{5} \right)^2 + \left( \frac{3}{5} \right)^2}dt\]
\[ = \frac{2}{5} \times \frac{5}{3} \text{ tan}^{- 1} \left( \frac{t - \frac{4}{5}}{\frac{3}{5}} \right) + C .................\left[ \because \int\frac{1}{x^2 + a^2}dx = \frac{1}{a} \text{ tan}^{- 1} \frac{x}{a} + C \right]\]
\[ = \frac{2}{3} \text{ tan}^{- 1} \left( \frac{5t - 4}{3} \right) + C\]
\[ = \frac{2}{3} \text{ tan}^{- 1} \left( \frac{5 \tan \frac{x}{2} - 4}{3} \right) + C ......\left[ \because t = \tan \frac{x}{2} \right]\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]
\[\int\frac{\cos x}{1 + \cos x} dx\]
\[\int\frac{x^3}{x - 2} dx\]
\[\int \cos^2 \text{nx dx}\]
` ∫ sin 4x cos 7x dx `
` ∫ cos 3x cos 4x` dx
\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]
\[\int\frac{\sec^2 x}{\tan x + 2} dx\]
\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1} \text{dx}\]
\[\int2x \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]
\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]
\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]
\[\int\frac{1}{a^2 - b^2 x^2} dx\]
\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]
`int 1/(cos x - sin x)dx`
\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx }\]
\[\int\frac{1}{4 + 3 \tan x} dx\]
\[\int x^2 e^{- x} \text{ dx }\]
\[\int\frac{\log \left( \log x \right)}{x} dx\]
\[\int x \cos^2 x\ dx\]
`int"x"^"n"."log" "x" "dx"`
\[\int e^x \left( \cot x + \log \sin x \right) dx\]
\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int\sqrt{2x - x^2} \text{ dx}\]
\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{ dx }\]
\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]
\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]
\[\int\sqrt{\cot \text{θ} d } \text{ θ}\]
\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]
\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int \sin^3 x \cos^4 x\ \text{ dx }\]
\[\int\frac{1}{1 - x - 4 x^2}\text{ dx }\]
\[\int\frac{1}{a + b \tan x} \text{ dx }\]
\[\int\frac{1}{2 + \cos x} \text{ dx }\]
\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]
\[\int x \sec^2 2x\ dx\]
\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]
\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]